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PREFACE

In the curricular structure introduced by this University for students of Post-Graduate
depree programme, the opportunity to pursue Post-Graduate course in a Subjects as -
introduced by this University is equally available to all learners. Instead of being
guided by any presumption about ability level, it would perhaps stand to reason if
receptivity of a learner is judged in the course of the learning process. That would be
entirely in keeping with the objectives of open education which does not believe in
artificial differentiation. _

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as to be upgradable with
the add:l.mn of new information as well as results of fresh thinking and analysis,

The accepted methodology of distance education has been followed in the
preparation of these study materials, Co-operation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing and
devising of a proper lay-out of the materials. Practically speaking, their role amount
to an involvement in invisible teaching. For whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care
without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it
will be for him or her to reach out to larget horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be
rated as quality self-learning materials, If anything remains still obscure or difficult
to follow, arrangements are there to come to terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these cfforts is still experimental-in fact,
pioneering in certain areas, Naturally, there is every possibility of some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are
expected to evoke wider appreciation the more they receive serious attention of all

- concerned.

" Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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~Unit 1 O Topological Spaces

(Topological spaces', Examples, Comparison of Topologies, Base for a
Topology, its properties, Sub-base of a Topology, neighbourhood of a point,
Neighbourhood system at a point, neighbourhood base, limit point if a set,
closed sets, derived sets, closure of a set, Kuratowski closure nper:itar,
Interior, boundary of a set, Sub-space ’I‘opaiugy, first and second Countable
spaces). '

§1. Let X be a non-empty set. Then the family p(X) of all subsets of
X, including the empty set is called the Power set of X,

For example if X = {a, b, ¢}, then its power set p(X) = {¢, X, {a}, {b},
{e}, {a, b}, {b, ¢} {c, a}}, contains 8 members. In General, if X consists of
n (distinct) members, then its Power set p(X) consists of 2" member. This result
is due to cantor.

Definition 1.1. A sub-family © of p(X) is called a Topology on X if
(T, X € t; o .

(T.2) Union of any number of members of © is a member of t; and
(T.3) Intersection of any two members of t is a member of t.

If « is a Topology on X, the pair (X, 1) is called a Topological space.

Explanation : For any non-empty set X, the power p(X) satisfies all
conditions (T.1) — (T.3) and forms a Topology on X ; This Topology is called
the Discrete Topology on X. Similarly, the sub-family of p(X) consisting
of ¢ and X only also forms a Topology on X called Indiscrete Topology
on X. But any sub-family of p(X) does not form a Topology on X. For
example, the sub-family ‘comprising of empty set only does not form a
Topology on X.

- Example 1.1. Let X = {a, b, ¢} and T = {$, X, {a} }. Then v’is a Topology
on X.

Definition 1.2. If (), ©) is a Topological space, members of t are called

open sets in X.

Explanation : In a Topological space (X, 1) qualification for a subset -
to be on open set is exclusively its membership in T, The more numerous s

9



T in members the more open sets are thete in X, Thus in discrete topology every
subset, including singletons, is an open set; but open sets are secarce in
Indiscrete Topology in X. '

§2. Comparison of Topologies :

If 7, and 7, are two topologies on X, then 1 is said to be weaker than Ty
(or, Tp stronger than 1t or, 1y is courser than T2 Of, Ty i8 finer than ) if every
member of Ty is a member of 1.

or, in symbol 13 < 3.

So Indiscrete Topology is the weakest and Discrete topology the strongest

Topology on X, and any other Topology © on X satisfies Indiscrete Topology
&1 < Discrete Topology.

Example 2.1. Cofinife Topelogy on X,
- Let X be an infinite set and © consists of empty set ¢ and those subsets
A of X such that X\A is a finite set, Then (T.1) axiom is satisfied. Let s o O
be a Tamily of members of ©, and A = UAs; Then XMA = X\|JA,=

Er ey

- NVAD e (XVA,) for every o, and r h s is a finite set: So X\A is a finite set.

o Ed 3y

Thus A et. Thus (T.2) condition is satisfied. Finally, Let Ay, A, et, then
KA M Ag) = (XA ) U (X\A,) = a Union of two finite sets = a finite set. Hence
Ay M A, is a member of t. Hence t is a Topology on X. This Topology is called
Co-finite Topology on X. :

Theorene 2.1. Intersection of any number of Topologies on X is a
Topology on X.

Proof : Let {tg}qea be a collection of Topologies on X and put t = 7,

med
Clearly (T.1) axion is O.K. for 1 and so is the case with (T.2). For (T.3) take
U and V as two members of 1, and then they are members of each 1, for o €A,
Since 1, is a Topology on X, we have U n V belongs to 1, for every member

o of A; and hence U n V is a member of © = [;]ﬁfr“. So, T is a Topology
on X.

Remark : Theorem 2.1 is not true if word “intersection” is replaced by
“Union”, Following example supports this contention.

10




Example 2.2. : Take X = (a, b, ¢) and 1y = {¢, X, (a), (a, b)} and
-1y = {, X, (c). (b, ¢)}. Then 1y and 1, are topologies on X such that t; U 1
= [, X, (a), (¢), (a, b), (b, c)}. As (a) U (c) = (a, c) is not a member of
71 \J Ty we find 1y \J 15 is not a Topology on X i.e. Union of Two topologies
may not be a Topology. To solve a problem in a Topological space (X, 1)
sometimes it suffices to know and use a part of © called a base for Topology
1 that we presently define. A ey

Definition 2.1. : A family @ of member of 1 in a Topological space
(X, 7) is called a base of the Topelogy 7 if and only if every member of <
is a Union of some members of &.

Members of g are called basic open sets.

For example, the family of all singletons is a base of the discrete
Topology on X.

Theorem 2.2, : In a Topological space (X, 1) a sub- famﬂ}r foofltisa
base of t if and only if for any open set G in t, and for any member u € G,
there is a member B € g to satisfy v eB < G. '

Proof ; Condition is necessary : Suppose @ is a base for T and G is
‘a member of t. So G.is a Union of .some members of g, say, G =

G Li{B :By €0} 1ty €G, there is a member, say B, , for some ol €A such

“that u eB e fo; clearly u €B,, © G.

C_ﬂnditmn is sufficient : Suppnae condition as stlpuldte,d holds. Take
a member G in t. Then for every p e G, we find a member, say, B, from g

such that p c By — G. So we can write G UB and, of course, converse
pel

is tue fe. U By cG. Combining them we have G = UB = a Union of

members 01 @. Thus g is a basis of =. L

Remark : A Given Topology on X may have Different bases. Also there .
is a caution. Not any family of subsets of X is a base for a Topology. For
example, take X = (a, b, c) and then the family ¢ consisting of (a, b), (b, ¢,

s



X and empty set ¢ fails to form a base for a Tﬂptﬁﬂg}' on X. Because if ¢
is a base for some topology on X, Unions of members of ¢ shall constitute
a Topology on X, and this is not the case here. Intf:rxectmn pmperty is failing
here (a, b) n (b, £) & o).

We have following Theorem in this connection.

Theorem 2.3. A family g of subsets of X forms a base for sorme topology
on X if and only if

({} b ego (i) X is a union of members of p and (iii) Given any two
members B and B, in @, and x e(B; ~ B»), there is a member By e ¢ such
that X €B; c (B; m By

Proof : Necessary part follows from the Definition 2.1 and Theorem 2.2,
For sufficient part suppose the g satisfies the stated conditions, and let © be

_ the family of all posible unions (finite or infinite) of members of . We check

that 7 is a Topology on X. For that purpose we atonce see that (T.1) is O.K.;
and (T.2) is also clear in favour of t. For (T.3) take two members C and D in
7 If x €(C m D), since C is a union of members of §, we find U € @ such
that ;

xelUcC, e k1)
Similarly find a member V € g such that
el = e (2)

From (1) and (2) and by hypothesis, we find a member W e g satisfying
x € W{UnmnV)c (Cmn D). That means, we can write C » I as a Union of
members of g showing that (C ~ D) et. Hence 1is a topolﬂgy on X and g
is a base of 1. The proof is complete.

Example 2.3. The family of all open intervals along with ¢ forms a

‘base for a Topology on the set R of reals known as usual or Euclidean

Topology of R. _ .
Solution : We assume ¢ as a member of this family, Take n = 1, 2, ... we

see that the union (—1', DU, 2v. .. ulnnuU.. = E:ji(—n,n} is equal

12



to R; Further if (a, b) and (c, d) are two open intervals and x €(a, b) N

(c, d), then open intervals intersect. Making n appropriately large, we make

open interval (ﬁ—%,x+l)xﬂ amal‘l that (x—%{ X+ )c:{a b} and ;x-—i x+l)

e, dY e (x—%1 x+-%] < (a, b) M (c, d). l-lencc all conditions of Theorem
2.3 are fulfilled. '

Theorem 2.4. A Topology 7, with a base @ is stronger than a 10D01Gg}r
1, with a base g2 if and only if forp & X and for Vo, € @ with p eV, there
is a member Vi & g2y such (hat p eV, < Vy.' :

" Proof : The condition is sufficient : Let G be any member of T, and
p €G. By base property we find a member V; € g0, with p eV, < G. By stated
condition we find 2 member V; € ¢ such that

peV;cG

So we can write G = U[V1 € (: V= G}, Hctn::re G e 1. Thus 15 < 74
i.e. T is stronger than T3

The condition is necessary : Let 1o < t;; So every member V; of @3
being a member of 7, is a member of T whose base is 2. 50 for p eVa, we
find a member Vy € g such that ; '

p = Vi Va

Example 2.4. All left-open (and right closed) intervals like {(a, b] (a,
b R and a < b) along with ¢ form a hase for a Topology called the upper
limit Topology of R which is stronger than usual topology of R.

~ Solution : Here {j]ir:—n,n] equals to R. If (a, b] and (c, d] are two such
intervals and u e(a, b] » (c, d], then left-open intervals do intersect. Then
taking n appropriately large, we make left-open interval (u — % u] so small
that (u — i- u} < (a, b] M (c, d]; and therefore Theorem 2.3 applies. Further
if (a, b) is an interval as a base member of usual Topology, and p e(a, b);. we

13



find a base member (a, ¢] of upper limit Topology stch that pelacla(ab).
So Theorem 2.4 applies for desired conclusion.

Example 2.5. All right-open intervals like [a, b) a < b, together with ¢
form a base for a Topolopy called the Tower limit Topology of R which is

stronger than usual Topology of R.

Solution : Similar to that of Example 2.4,

Definition 2.2, A family S of subse_ﬁ of X is said to form a sub-base
for a Topology t of X, if and only if the family ¢ of all finite intersections
of subsects in Sg forms a base for . '

Members of S are called sub-basic open sets.

_ Example 2.5. Let 8@ consists of all half rays like (—co, a) and
(a, «0) as a eR. Show that S forms a sub-base for a Topology of R(which
Topology?). ' ' :

Theorem 2.5. A Collection § g of subsects of X is a sub-base for a
Topology on X if and only if (a) ¢ 8 g2 and (b) X is the Union of some
members of § .

Proof : If S o is a sub-base for a Topcrlogjf, then ofcourse (a) and (b) hold.

; Cﬂnvérsely, let a family S g of subsets of X obeys (a) and (b), and let g denote

the family of all finite intersections of members of S . Then we have ¢ € g
and X is a Union of members of p. Further, if By, By are any two members
of p,letBy=U; nlU; ... U“l where U; €S @ and By = V; ry Voo,

_ ﬁVnz where V; €S p.

If x €(By m By); Putting By = By n By, we find By as a finite intersection
of members from S ; and By e g, satisfying x €By < (B) m Bj). Then
Theorem 2.3 applies to complete the proof,

Remark : The Topology T referred to in Theorem 2.5 is the smallest
Topology on X containing members of § {2, in the sense that 1 is weaker than
every Topology on X containing members of S . '

14




§3. Neighbourhood of a point, Neighbourhood system.
Let (X, ©) be a Topological space and x €X.

Definition 3.1. A subset N, of X is called a neighbourbood (or mrnply Nbd )
- Bhx 1f there is an open set O, in t such that

x € O, c N,.
An ﬂpen set O cnntammg x can also be rcgarded as a nbd of x.

Explanation : A nbd, Ny of x is always non-empty becausc x € Ny. Also
whole set X is a nbd of each if its pmnts If X is infinite, then X is the only
nbd, of a gwr;u point x in X when v is Indiscrete Topology, while there are
many nbds. of x in X when 1 is the discrete Topology. In the real number space
R with usual topology a point x has neighbourhoods like ﬁpen intervals
_containing x. _

Theorem 3.1, A subset O of X is an open set if and only if O is a nbd.
“of each if its points. '

Proof : Let O be an open set in (X, 1) ie O er,andx € O, PltIN,‘ S
and we find x € O Nx, that confirms N, as a nbd. of x,

Conversely, let a subset G enjoy thc property as stated; and if x ¢ G,

we find a nbd. G of x : So, there exists an open set, say, Ox & t such that
S e C} c G. Then we write, ) '

G= U0

Jiéf-l
= a Union of some members nf T, and hence G is an open set.

Notation : If x e X, let a5 denote the family of all nbds of x in (X,
1), e, is also teimed as neighbourhood system at x.

Properties of .
(a) If N, ec/y, then N, # ¢; _
(b) If N; ead; and Ny < H, then H ecdy (H is a member of ady);

4k



(c) Intersection of two members of @y 18 a member of wty;

(d) If Ny eadg, there is 4 member N* e 1% such that Ny ea i, for every
member u e N*.

Properties (a) ~ (¢) arc very much evident. We need not give proof,
For (d), since Ny is a nbd, of x there is an open set. say. G satisfying
XxelGa N, (1)

Since G is open, Theorem 3.1 says that G is a nbd. of each of its points -

ie. G end] for every member u €G and by (1) it follows that N, eat; for

u €G (here G = N#).

Definition 3.2. A sub-family o, of o4 is said to be a nbd. base of x
if for every nbd. N, of x, there is a member By € g such that

B.c N,

Explanation : A Given point of a Topological space (X, t) may have more
than one nbd base. For example, in the space R of reals with usual topology
a point X has a nbd. base consisting of all open intervals like (x — Lox+ 1),
n =1, 2, ... also corresponding closed intervals constitute a nbd. base at x. In
Euclidean 2-space R* with usual Topology, we find that every point (x, y) e R*
has a nbd. base consisting of all open oriented rectangles centred at (x, y). Also
all open circular discs centred at (x, y) shall form a nbd. base at (x. y).

Topology from neighbourhood axioms :

Given X # ¢ if each point X in X is associated with a family of subsets
under constraints of so called nbd. axioms, one can then derived a Topology
on X. Following is a Theorem in this connection.

Theorem 3.2, Let cach x in X be associated with a non-empty family
a4y of subsets N, of X satisfying

(a) Ny = ¢, and x €N, for every member N, ecl;
(b) if Ny ea; satisfies Ny < W, then W Sy

16




©) if N&O, N& ey, then (NS ~ N&) enty

(d) if N, ecf, there is.a member N* ec{ such that N, eal for every
member u € N¥,

For the proof which is lengthy, any standard book may be consulted.

§4. Limit point of a set. Closed sets.
Let A be a non-empty set in a Topological space (X, ©).

Definition 4.1. An element (point) p of X is called a limit point of
A # ¢ if every nbd N, of p meets A at a point other than p. Equivalently if
Ny M (A\{p}) = ¢.

If p is not a limit uf A, then p is Sdld to be an Isolated prmt of A, In
that case we find a nbd. N, of p such that N, m (A\{p}) # ¢ or equivalently
Np M A is either ¢ or {p}. :

Eﬁplanatinn : A litnit point A may or may:not'bf: a point of A, It attracts
every nbd. to intersect A at a point other than p. Naturally, the more are nbds.
of p, the less is the chance of p to be a limit point of A and the less are nbds.
of p, the more is the chance of p to be a limit point of A. Thus in (X, t) with
t as discrete topology, a given non-empty sct A possesses no limit point in
X, because open sets are too numerous; If t is the Indiscrete Topology, the
subset A atiracts every member of X as its limit point; Here only non-empty
open set is X only. :

Example 4.1. Obtain limit points (if any) of following sets of reals in
the space R of reals with 'u*mzﬂ Topology. '

(a) A = (L, 2 23 ! ,,1, ...), (b) The set Q of all rationals in R. (¢) The set N
of all antural numbers and (d) A finite subset of reals.

Definition.4.2. The set of all limit points of A in (X, 1) is calied the
derived set of A; it is denoted by A"

Explanation : The set A’ may be empty; for example, take a finite subset
A of reals with usual topology. Here A has no limit points at all i.e. A" = §.

17
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A’ may be 'disjnint with A. A" may be a part of A; for example take A = the
closed unit interval [0, 1] of reals with usual Topology. Here A' = A. The set
A’ may be strictly larger than A. For example take A as the set of al] rationals
in real number space R with usual topology. There A’ = R which is strictly
larger than A.

Definition 4.3. A subset F in topolﬁgmal space (X, ) is said to be a closed
set if F' c F ie if every limit point of F is a point of F.

For example, every closed interval, every finite subset of reals and the set
N of all natural numbers are each a closed set in R with usual Topology.

Theorem 4.1. A subset F in (X, 1) is closed if and only if X/F
(Complement of F in X) is an open set in X i.e, if and only if X\F) ex.

Proof : The condition is necessary : Let F be a closed set in (. o)

It F is empty, then its complement X is of course an upe:n-sc:t et1. Let F he
. non-empty and u €(X\F). Then u is not a limit point of F and we find a
nbd, and hence an open 11bd (say) N, of u such that N, m F = ¢; this shows
that N, < (X\F), and (X\F) is rendered a nbd. of u: Thus (X\F) becomes a nbd.
of each of its points, and so (X\F) is an open set in X,

The conditien is sufficient : Suppose X\F is an open set in X and x is a

limit point of F. It possible, let x ¢ E So x &€(X\F). Thus (X0\F) is a nbd, of
X such that

(X\F)ﬁF = §.

That contradicts the assumption that u is a limit point of F. Hence the proof
is complete. :

Notation : In {X., 1) denote the family of all closed sets in X h;r F
Remark : By De-Mongan’s Laws following statements are evident,
()X, ¢ eF '

;[2) Intersection of any number of members of cﬁ' is a member of ¢#
(3) Union of two members of <7 is Ia member of <& |
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T
However, union of an infinite number of members of # may nol he a
member of & For example, in the real number space R with usual wpology
let ‘us take the closed intervals, '

I, ='[J‘_], 1] as n =1, 2, ... Then cach I, is a closed set of R such that

U]I,t =(0.1] which is not a closed set in R,

85, Closure of a set in (X, 1).
‘Given a subset A of X, its closure denoted by A is defined as
AsmiEFc X Flaac!ﬂsedsctiuiX:A}

The R.H.S. being intersection of a number of closed seth in (X, 1) is always

a closed set in X. Thus A is always a closed set Lu_nt_ammg A, and it is the
smallest closed set to contain A.

Explanation : Closure of A = A is a closed set no matter if A is closed
or not. For example, if A = open unit interval (0,:1) of reals with usual topology
we find its closure A = closed interval [0, 1] which is a closed set: but A =

(0, 1) is not a closed set. Clearly if A is it self closed, then A = A and converse
is also true.

Theorem 5.1. A = A U A,
Proof : Here A A;SoA ' c A’ c A because A is closed. Heﬁce
| (AUuA)Yc A s 1

Again if x € A, then every nbd. of x meets A. non-vaculously. For, if
x € A then there is an open nbd. Np = X\A of x which does not meet A.

Thus x is either in A or a limit point of A

Accordingly, x € A U A, _

Hence A C .(A U Al ' A2

Combining (1) and (2) we get ‘A = A w A’ .

‘Definition 5.1. (a) A subset G in (X, 1) is said-to be everywhere dense
~ or simply dense in X if G = X, |
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(b) Topological space (X, 1) is said to be separable if there is a countable
dense subset in X, i

For example, the set  of all rationals in R is dense in B with respecl to

usual Topology of R, ‘because of the fact that between any two reals there age
many rationals.

Example 5.1. Let X be an uncountable set, and T is a family of subsets
of X consisting of ¢, and complements of finite subsets of X, Show that
(X, 1) is a Topological space where every infinite subset of X is dense.

Proof : By a routine exercise one checks that axioms of Topology T.1 -
T.3 are satisfied and (X, 1) is a Topological space. Let A be an infinite set. If

. x& X and Ny be a nbd. of x ; We may assume N, to be open. If Ny o (AN x D

= ¢, then we have (A\{x}) < (X\N,) or A = (X\N,) U {x}, rhs. bcilig a finite
set it implies.that A is a finite set which is not so. Therefore, N, ™ (AV{xD
# ¢, that means x is a limit point of A; ie. A = X.

Kuratowski closure operator :

An operator that assigns to each subset A of X another subset of X denoted
by A® is called a Kuratouski closure operator il following four axioms known
as Kuratowski closure axioms hold :

(K1) ¢° = ¢ _

(K.2) For any subset A of X, A < A® _

(K.3) For any two subsets A and B of X (A U B)* = A® U B¢

and (K.4) For any subset A, (A%) = A®

Theorem 5.2. Let ¢ be a Kuratowski closure opérator on « non-empty set:
X, nndlLet < be the family of all subsets A of X for which A* = A; and 1 =
[G < X : (XAG) € .#}. Then 1 is a Topology on X such _thﬁr A" = t-closure
of A for every subset A of X.

Proof : ¢ and X bclorr;, to T because their Lomplemcnh X and ¢ are
respectively members ni et 16 een be an arbitrary sub- ianu]y of T and
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put G = |JG,. Then XAG =X\ U Gy = XVGy) c(X\Gy). Then (XAGF <
aeh WEA aed ;

(K\Gg)® = (X\Gg) because (X\G) is a member of .Z This is true for every index
‘o € A, and therefore (X\G)® ¢ (X\G,)=X\|] G, = X\G. That means

el - eEd -
_(X\G)" = X\G and it is a member of 4 and hence G € 1. By a similar reasoning
“intersection of any two members of T is member of 1. So 7 is a topology on .

X. It remains to show that for every subset A of X A® equals to A (= 1-closure
of A). '

Now E"z_ Intersection of all 1-closed sets each containing A
= Intersection of members o.f ¥ each containing A.
and, therefore, A is a member of J with A c A,
Uéing Kuratowski closure axiom, A"c (A=A .. (1)
Again by Kuratowski axiom (A%)" = A® o A.
That means, A® is a member of & with A* D A.
This gives, & c A® 2
Combining (1) and (2) we have A = A" and the proof is complete.

Definition 5.2. (a) Given a non-empty set A of (X, 1) a point x € A is
said to be an Interior point of A if there is an open set O in T such that .
xe O cCA.

(b) Interior of A or simply Int A = {x € A . X is an interior point of A}.
~ Example 52.If A= Open inte_rvai [ EE RS e S R |
Find Int A (w.r.t. usual topology of reals).

Solution : Here every member of open unit interval (0, 1) is an interior point
of A and none of its points like 2, 3, ... is an interior point; because member
s A individually do not attract a whole open interval containing it, but
contained in A. So Int A = (0, 1).

. Example 5.3. In (X, 1) if G is an open set and A is any subset of X, then
GNnA= ¢ if and only if G AKX =0 (bar denoting closure).

Solution : f G n A = ¢, then G N A = ¢ because A < A
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Conversely, let GNA=¢and G~ A = ¢. Take a member u e (G ™ ;.x]
Clearly n ¢ A; Souis a limit point of A, Smcc ue Gand G is open; G is

anbd. of u such that G N A = ¢ — that is not true. So conclusion remains valid
as wanted.

Remark : Int A ¢ A  closure A where Int A is the largest open subset

of A and closure A is the smallest closed (so- calied) superset of A to satisfy
the inclusion.

Theorem 5.3. For any non-empty subset A of (X, 1).
(a)-Int A is an open set

(b) A’is open if and only if E\. . Int A

(c) If A < B, then Int A < Int B,

(d).lm A= X\(X\A).

Proof : The proofs for (a) - (¢) are easy and left out. For (d) X\A is a

closed set containing (X\A); So complement X\(X\A) is an npe.n subset of A,
and therefore we have -

XMXVA) Int (A) L

Again, A O Int A gives (X\A) < X\Int A, which is a closed set containing
(xm} and thereic:re,

(X\A) < (X’ﬁnt A)
So, X\{XEA) D Int A (Taicmg Complement) e (D)
Cc-mbmmg (1) and (2} we pmduce
Int A = X\(X\A)

Allied to closure and Interior of a set A in (X, 1), there is another operator
called Boundary of *A, denoted by Edr (A) that we presently define.

Definition 5.3. Bdr (A) = closure (ANInt (A).
(=A -4, A denoting Int A).
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For example, in Enélidcan 2-space R? with usual topology i+ A is laken
“an open circular disc given by
| A=y E+y<r)
~ Then A = the closed circular disc = {(x, y) : 2+ y* s ). and A = A
and therefore _ h _ '
Bdr A = A\A
= A\A |
=y X+ y% = 1%}, namely it represents the circle with radius r

centred at (0, 0).

: Definition 5.4. A subset G in (X, 1) is said to be nowhere dense in X if
Int (Closure G) = ¢

(ie. (B) = ).
For Example, eve{ﬂf finite subset of reals w.r.t. usual m,lr_m!s}gy 15 a nowhere
dense set. An infinite subset of ﬁ:als may or may not be'a nowlicre dense set.
The set N of all natural numbers is, of course, nowhere dense, And the set

Q of all rationals, an infinite set of reals is not nowhere dense set; becausc
- Q) = whole space R of veals with usual topology.

~ §6. Sub-space of (X, T). :
Let A be a subset of a topological space (X, T). Let us put T4 = {U N A

cuet).

Then it is a routine exercise to check that the colléction T of subsets of
A forms a Topology on A as per Definition 1.1. The pair (A, Tp) 18 called a
sub-space of (X, T). :

We have the following Theorem in this connection. :

Theorem 6.1. Let (A, 14) be a sub-space of (X, ). Then (a) if B is a base
of 7. then By = {B M A : B €3} is a base of Ta. :
(b) A subset H is a neighbourhuﬁd (nbd) of a point x € A it and only if
H = A ~ N, where Ny is a nbd. of x in (X, 1)
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(c) A subset C is closed in (A, 15) if and only if C = A G, where G i
a closed set in (X, 7). :

Proof : (a) Take x e A, since B is a base of T, we find a member B e @
such that x € B; Thus x ¢ (B n A), where (B m A) e B, Suppose Vy, V,
€ By and x € (V; n V,); Then Vi=B, A, and V2 = By A, where B,
By € B. Since B is a base of 7, and x € (B; m By), by property .of basc there
18 4 member By € B to satisfy x € By (By m B,); Therefore x e Vi o

. (Vi n'V,) where V5 = (Bs n-A) e Q?,-.L;. Therefore B, is a base of T

(b) Let H be a nbd. of x in (A, To). Thus there is 2 member V € Ty to satisfy
XeV o H ButV="UnA for some U e 1. Put Ny=(UUH).SoxecUc
Ny, wherefrom we find Ny is a nbd. of x in (X, 1) and also H = A M N, ; The
converse goes by a similar argument,

(¢) Let C be a closed set in (A, Ta). Then A\C is open in (A, T,) i.e. (A\C)
€Ty and take (A\C) = A 1 O where O e 1. Then G = (30\0) is closed in
(X, 1), such that A 0 G = A (X\O) = AMA 1 0) = AVAWC) = C.

Conversely, let C = A n G where G is a closed set in (X, T). Then
(X\G) is open in (X, 1), and (herefore A0 (X\G) € 14. Now A (X\G) =
AVA N G) = A\C; showing that (A\C) e 1, and therefore C is ¢losed in
(A, T4). |

Example 6.1. Let G be 3 closed set in {X,.T}, then a subset of G is closed
in (X, 7) if and only if it is closed in (G, Te).

Solution : We know that a subset D of G given to be closed in (X, 1) is
closed in (G, 15) if and only if D = G n H where H is closed in (X, T RHS.
set Is intersection of two closed sets, and is closed in (X, 1) ; So LHS is a closed
set in (X, T). '

Conversely, let a subset D of G is closed in (X, 7). Then D = G i D is
closed in (G, 15). :
Example 6.2. Let A be an mpaﬁ set in (X, 7). Then a subset of A is open
in (A, 14) if and only if it is open in (X, 1).
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Solution @ Given A as open set in (X, 1), let a subset B of A be open in
(X.7.); So let B = A M O where O s open in (X. 7). Now rh.s. = Intersection
of two open sets in (X, 1), and hence 15 an open set in (X, t); Thus Lhs =B
is open in (X, ’1:}._'

Conversely, let B be a subset of A and B be an open sel in (X, 7). As B
= A m B, so B is open in (A, Ta). '
&7. First and Second Countable spaces :

Definition 7.1. A Topological space (X. d) is said to be a Second countable
space if there is a countable base of the topology T of X.

Example 7.1. The real number space R with usual topology T is second
countable. '

Solution : Consider the family B, of all open intervals with end points
as rational numbers. Since the set of all rationals is countable, so is the family
#.. As every open interval is a member of T, we have

BT,

- Letx eR, and G is an open set &1 with x € G, we find an open interval,
_ say (a, b) (a, b are reals) such that

xefa,b)cG
~ Since the set of all rational numbers is everywhere dense in R, we find two
rationals u, v satisfying ' '
a<u<x<vh

Clearly. (u, v) is an open interval with rational end points and is a member
of B, such that x e(u, v) € (a, b) € G. Hence B, is a countable base for T,
and (R, 1) is second countable. '

Theorem 7.1. Every. second countable Topological space is separable.

Proof : Let (X, 1) be a second countable space and let {By, Ba. ... & BRI
be a countable open base of T.
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- Take b; & Bi.i=1,2, . and put B = (by, ba, ...i by, ...): Then B iy a countable
subset of X, and we shov that B is dense in X jie. B = X. Take a member x
& (X\B), and G is an open set containing x. By base property we find g member
B; such that

xeBic G
So X # b;. Thus G intersects B at a point other than x. That is (o say, X iy
a limit point of B. So'a point of X is cither a point of B or a limit point of
B;SoB=X : '
Remark : The Converse of Theorein 7.1, s false. Example 7.2 supports
the statement, '

Example 7.2. The real number space R with lower limit Topology
géncrated by & and all rightuopen intervals like [a, b), a < b is scparable without
being second countable, '

Solution : Let Q be the set of all rationals. The Q is countable : Because
between any two reals there are m&my rationals, basic open sets like intervals
[a, b), a < b includes members of Q, and hence Q is dense in R wi_rh lower
limit Topology. But_this topology is not second countable,

It possible. Iet [ay, by), i =1, 2, ... be a countable base for this topology (a;
< by Let u be a real = (=12 .)and v>u: and then [u, v) is an open
setof lower iimit Topology such that nofie of [a;, b;) satisfies u e [a;. b)) < [u,-
v). Because otherwise u £ o, < P gives '111- = u which is not the case, Hence
conclusion as desired is valid in Example 7.2,

It is time-to say when a Topological space is first countable.

Definition 7.2. A Topological space is said to be first countable i the nbd,
system if cach of its points has a countable base.

Explanation. Concerned Definitions tell s that if a Topological space
(X, 1) is second countahie, then it is first countable. But converse is not
true. Because let X be uncountable, and 7 is the discrete Topology. Then
(X, T) is first countable. For if.x X, éingle nbhd {x} éuns[itutcs nbd. base
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of the nbd. system .4, in (X, 1). But (X, 1) is not second countable. Because
(X}xex = a family of open sets in T possesses no countable sub-family whose
union is X.

Example 7.3. The real number space R with lower limit Topology (See
Example 7.2) is a first countable space.

Solution : Let x €R, and put B, = {[x,1) : r € 'Q which is the set of all
rationals}. Here x < r. Then B, is a countable sub-family of the nbd. system
- at x in (R, 1), T. denoting the lower limit topology on R. B, is a nbd. base
at x; because if Ny is any nbd. of X relative o T, there is a right-open interval
like [a, b) such that : _ '

X €a, E) v
~ Clearly a £x < b. Take a rational r such that x <r < b; Then [x, r) €3,
. such that x e[x, r) © N,. Our argument is over and Example 7.2 stands.

Exercise - A
Short answer type Questions
1. Given a non- empty set X any two Topologies are Comparable. Either prow: it
or give a counter: example
2. fA=(, _2., 5. ., 1. ..) obtain limit poinis, if any, of A if A is given (i) the
L : g

discrete Topology (ii) the indiscrete Topology and (iii) the usual topology of reals.

i Ina pou]ogical space if for any two open sets U and V we have Um V = §.
show that U n V = U M V = ¢, bar denoting closure. '

4. Show that if X is infinite and T is the co-finite Topology of X, any two non-empty

open sets have a n0n~e.mpt},r intersection,

5. In a Topological space (X, 7) if A < X, show that Bdr (A] =¢if am:l -:)nly it A
is clo-open. :

6. Find two subsets A and B of reals w:th usual Topulogy such that Int (A) W
(B) = Int (A v B).
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Exercise - B

Let X be an infinite set with xy € X. If ¢ is the family consisting of all sets that
do not contain xp and all sets (X\F) where F is a finite subset of X Show that

(X, 9)is a Tnpﬂloglc:dl space where every mng]eten other that {x,} is clo-open.
Also show that {xp} is closed but not open. '

Show that Interior operator in a Topological space (X, 1) is subject 1o following
conditions : ; : :

(i) Int (X) = X (it} Int {A) = A (iii) Int (A M B) = Int (A) ™ Int (B)
(iv) Int (Int (A)) = Int (A) for any subsets A and B of X, ;

In a Topological space (X, 1) of A — X, show that

(a) Int-A = A\Bdr(A) (b) A = A v Bdr (A, bar denoting the closure and

(c) Int A m Bdr A = ¢.
Let X be an infinite set, and for any subset A of X, let
A= A when A is a.finite subset of X,
= X when A is an mf}mtc subset of X.

Vﬂuf}r that A® satisfies Kuratowski Llnaur{: axioms, and the resulting topology is
the co-finite Topology on X,

Ina Tapo!::sgy Space (X, T) show that (a) if G and H are open sets in X, then Int
{GnH} = Int (G w1 H), bar denoting the closure. (b) if G is-0pen and H is dense,
then GAH = G, bar denoting the elosure,

IF X # ¢, show that for any collection T. opologies for X there is a unique Largest

Topology which is smaller than each member of the collection, and a unique

smallest Tnpulag}r which is larger than each member of the collection.:

For any A < X, prove that (a) (A)° = Int (A%) and (b} (Int A) = A*, where “¢”
indicates complementation.
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‘Unit 2 O Continuous Functions Over Tﬂimlqgicéll
Spaces |

(Continuous function over Tl}pﬂlog:cal space, Hnmeﬂmnrphlsm Their
Characterisations, Continuity of Characteristic function, Nets, Filters,
Their convergence, Mutual implications, Product spaces, Projection
fumtmns, Their properties; Open functions, Closed functions, Quotient
spaces). :

81, Let (X, 1), (Y, U) denote Topological spaces.

Deﬁmtmn 1.1. A function f : (X, ©) = (Y, U) is said to be mnnmmu'a
if for every open set u € U in ¥, f~1(u) is an open set & T in X.

Definition 1.1(a). If x = xge X, then f : (X, ©) — (¥, U) is said to be
continuous at xg if corresponding to any nbd. W of f{(xp) € ¥, there is a nbd.
V of x¢ in X such that (V) < W. _

If f is continuous at every point of X, then f is said to be continuous over
X, or smiply £ : (X, T) — (Y, U) is continuous,

Definition 1.2. A function f: {X T — (Y, U} is said to be an open fnmtiun
if it sénds open sets into open sets Le.if O g7, f(0) el

Tt is called a closed function if it sends closed sets into {:lﬁEE{] sels fe
if T is a closed sét in X, then f(F) is a closed sct in Y.

Definition 1.3. A 1-1 and ento (bijective) function f : (X, 1) — X,
is said to be a Homeomorphism if £ and £~ are each continuous.

Explanatmn Let (X, T) be a discrete space, then any function f : (X, 1)

— (Y, U) becomes 2 continuous, because given any v €U, 7 Yu) is always
an open set in discrete Topology on X. If 1; and 1, are two topologies on X
such that Ty is stmngcr'tﬁan 1,. Then identity function I : (X. ;) — (X, T2)
i.e. I(x) = x for x € X is a continuous function. If fisa real-valued function
of a real variable i.e, f : R — R then taking R with usual topology of
reals and remembering that open intervals form a base if the Topology we
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get from Definition above that { is continuous at a point x5 € R if copfes
ponding to € > 0 there is a +ve § such that fixg) - € < f(x) < f(xg) + e
ie. | fix) - fixg) | < & whenever Xj—O0<X<Xg+die |x Xgl < 8. Thus
definition of continuity of a function [ as above is in agreement with (e - B).
Definition of continuity of f-in classical analysis, :
: Example 1.1: Let R be taken with usual topology and f : R — R be taken
as
fix)=0ifx <0
=xif Ox <1
=1lifx=zl.
Then ['is a closed function without being open.

Theorem 1.1. Let [ : (X, 1) = (Y. U). Then fuIlnmng statements- are
equivalent (That is to say, each implies the other),

{(a) I is continuous.
(b) If F is a closed sct in Y, then f “YE) iy cIoaed in X,
{c) If 58 be a sub-base for U in Y, and Ge $B, then f4(G)e1,

(d) for each nbd. W of f(x) in Y as xe X. there ; i1s anbd. V of x in X such
that fiV) c W, '

(e) f(A)cf(A), for every subset A of X bar denoting closure.
() _f"{Bj_f:f" {'E} for every subset B of X, bar deneting closure,
(2) £ (Int (C)) < Int (t-1C)) for &very subset C of Y.

Proof : (a) = (b); so ! (an open set in Y) is an open set in X. For (b)
Let F be a closed set in Y: then (Y\F) is open in Y, and by (a), T Y\E) is open
in X i.e. X\f! (F) is open in X, and hence £4(F) is closed iy X

(b) = (c): Let G be a sub-basic open set in Y, then (X\G) is a closed set
inY; by (b) £ I{Y‘I.G} X\f‘"{G) 15 a closed set in X and therefore its complement
-1(G) is an open set in X. So (c) holds,
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“{c)= (d); Letx e X and Let W be anbd. of f(x), and U e U sucl. that f(x) e
U o'W, Without loss of gencrality take U as a basic open set in Y and therefore
U =W, nW>n ., N W;as a finite intersection of sub-basic open sets W,
Wa, ..., W is S Lu fix)e W, U o W. Now £71(W;) is an open set in X'
by {L) with x e W), Put Vo= £1(W;) which is a nbd. of x such that (V)
=W, c W. S0 {d} holds.

(d) = (e); Let A be any subset of }{ and vie f{A) Take u € A so that [{u)
=v;IfueA we have v=1{lu) e f(A) c frA) and we have finished. 50 assume
ué A butuis alimit point of A; Let W be a nbd. of f(u) in Y, by (d) there

is a nhd. V of u such that f{(V) = W. Now W cuts AL as v is a himit point of
A, nonvacuously and so, V. v (AMu} # .

- Now f(V m {(AMu})) # o, or t‘(*v’ﬁ A AU # :b and hence W (FCANUY)
. ¢ since V) o W.

That means, fiu) is a limit point of T{A).
or, v = f(u} is a limit point of [{A)

“JewE TUAY _

Therefore, we see f(A) © f(A). So (e) holds. -

(¢) = (f); Let B € Y, Put A = ~/(B) € X; So, f(A) = B by (¢)
f(A) € T(A) or, f[ﬁﬁfb)&:ﬁ

fe. f (B ct (B So (f) holds.
() = (g); Take C < Y.
“Then we have ™ (} nE Gl (YA C)} iby relation between closure and
Interiory;
= XA (TAT)
cXATYNO) from (0
=XAXNC)
= Int {7 (C).
Thus (g) holds.
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(8) = (a); Lot G be an open set in Y: Then Int G = G. and by (g) £1(G)
= ! {(Int G) = Int f“l{Gj. That means, £71G) is an open set in X: and hence
f is continuous. The proof is cornplete.

Theorem 1.2. For a bijective (1-1 and onto) continuous f{unction [ -
(X. 1) — (Y, U) following statements are equivalent;
(i) I is a homeomorphism
(i) £ is closed
(1ii) f is open,
Proof : The proof is a routine verification based on the fact that for Cvery
subset A of X, (f~')! (A) = f(A): details are’left out.
Example 1.2. In every Topological space (X, 1). the identity function I :
X —= X where I(x) = x, x ¢ X is a homeomorphism. ;
Example 1.3. If the space R of reals is taken with usual Topology then
for a > 0, the function £ : R — R where f(x)=ax, x e Risa homeomorphism.
; Deﬁnitiﬁp 1.4. Topological spaces (X, T and (Y, U) are called homeomorphic
if there is a homeomorphism h : (X, T) = (Y, U).

Explanation : Suppose (X, 1) and (Y, U) are homeomorphic spaces. A
homeomorphism h : (X, 1) — (Y, U) establishes 1-1 correspondence between
elements of X and Y and between open sets of the two.spaces. Thus a property
of a Topological space X defined by means of open sets is transferred to the
space Y that is homeomorphic to X. Examination of these properties. called
Toplogical properties is essentially the subject of “FrOPOLOGY”.

Example 1.4, Let A be a non-empty proper subset of a Topological space
(X, 1) and be R be the space of reals with usual Topology; then characteristic
function %4 : X — R is continuous it and only if A is clo-open in X.

Solution : Let x4 be the characteristic function of A X, and so

YA =1 - ifxe A
=] ifxe A
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Suppose (s 18 continuous and take an open set G < R, then

i 16 8 = T it G contains 0 and 1, - e L
o if G contains 1 but not §. s (ii)
= (X\A) G eentaing 0 bopaot, L o o 0 g s (iii)
= if G contains none of O and 1. e

Since ¥ (G) 1s always open in X il follows from (i) — (iv) that A is clo--
open in X. The converse is also true.

82, Nets and Filters : :
Definition 2.1, A binary relation denoted by-z is said to direct a non-empty
set D if :
D m, 0 and p are members of D such tliat mznandnzp thenm 2 p
{ = is transitive) : '
(ii)m € D, then m =z m (2 i reflexive) :
(i) m and n are members of D, then there is a member p in D such that
pzmandp2n,
. = directs D, then the pair (D, 2) is_sai;ﬁ to be a directed set,

'Fur'c:mmplc the set I of all natural numbers is a directed sct _with usual .
order of reals. ' _

Explanatmn : A very common example of a directed set is the set N of
all natural number with usual arithmetic ordering. So (N, 2) is a directed set.
[F(X, 1152 Tcrpulnﬂmal space and .4y is the family of all ncwhbmuhmdf-‘. of
apointxe Xisa directed set directed by set inclusion relation < (being a subset

of). Note that a directed set need not be a partially o dued sef, muce Delinition
© 2.1 does not invite antisymmetry.

Definition 2.2. If5: (D, 2) > Xisa function where (D, z)isa ql:reutut
set and X is a non-empty set, then S is called a net in X:

or, equivalently, 5,(= S(n)) € ¥ asneD.
or, in sy_fmbcl, anet {S,;ne D, 2}isin X,
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A net {S, : n € D, 2} is said to be eventually in X if and mﬂ} if ume
hamamberNEDauchthatS e XifnzN. )

A net {S,, :ne D, 2} is said to be Frequently in X if and only if for each
me D, there is a member n € D such that n 2 m and S, € X.

Remark : A Seguence {Xq} is a met with /% as a directed set,

Explanatmn If anet {S,;;ne D, 2} is Frequently in X, Let E= {ne D :
Sy € X}; Then for each member m € D, we find a member p e E with p >
n. Such a subset E of D is called cofinal. Cofinal subsets of a divected set
are used in theory of subsets of a net.

Definition 2.3. : A net (S, me D, 2} ina Topological space (X, 1) is
said to converge to an element u € X, if and only if the net {Spaineb,2)
is eventually in every neighbourhood of u in X. '

For example; if (X, 1) is a discrete space (t is the discrets Topology), then

_ anet{S, ne D, c} coverges to a point u iff {S;. n € D. c} is eventual in

{u}: That is to say, from some point on S,’s are all-equal to u. On the other
extreme case if (X, ) is indiscrete, (only open sets are ¢ and X), then every -

“net {S,, n &€ D, c} converges to every point of X. Cousequently a given net
- may converge to several distinct points. :

Theorem 2.1. In a Topological space (X, 7) (i} A point u in X is a limit

point of a subset A of X, if and only if there is a net in A\{u} such that the
et converges to u. '

(i) A point u belongs to closure of a non empty set A ie.ue A if and
only if there is a net in A converging to u,

- (dii) A subs_e:t A in X is closed if and only if no net in A et;nverges to a
member of (X0\A).

Proof : (i) Let u € X be a limit point of a subset A if X. Then ever y nbd.
N, of u cuts A in a point other than u:

ie N, n (M{u}} # ¢; Take xy, € Ny, U-k\{u}).
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We know that the family . ni all nbds. N, of u forms a du goted set with
_ respect to set inclusion relation . ;

Then { Xy -V <} is a net in A\{u] such that if N, and Nj are nbds. of
u with N’ < .&, then by construction Xy« e N, cN,. Hence the net
{KNU* 7 4 {:} is eventually in every nbd of u, implying that the net converges
to u. il .

The converse is obviously straight forward.

(ii) A = closure of A = A U derived set' A’ _((}f A). For each meniber u €
A’, there is a net (by preceding part) in A converging to u; For each member
ue A,anynet{S,, neD, 2} SuchthatS,=u forall n'e D becomes cmwcrg{:ﬁt
net converging to u. Therefore, each point in A attracts.a netin A that converges
at that point,

~(iii) This part 15 now clear because a set is closed if and only if A=A,

Theorem 2.2. A function f : (%m0 ’L.T] is c::rntmuous at ce X if
and c:-nly if every net {S,,neD, 2} in X that converges to ¢, the net {f(Sy))
- n e D, 2} converges to f(c) in o) -

In symbol, f[th ]=iimt‘LS ).

Proof : The condition is necessary : Suppose f is continucus.atx =c € X.
Let {Sy, neD, 2} be a net in X that converges to ¢. So it is eventually in every
nhd. of ¢ in X. Take N, be a nbd. of f(c) in Y. By connnunny if f at ¢, we
have I~ (Ng) is a nbd. of ¢ in X. So {5,.neD, 2} is eventally in £~/ (Ngg).

That is to say, {f(S,), neD, 2} is eventually in Nm, and the net [f(S,). ne D, Z|
converges to f(e) in Y.

The condition is sufficient : Let the condition hold. If possible, let f be
not continuous at ¢ in X, We seek a contradiction.

- Failure of cdntinuit}f of [ at ¢ invites a nbd. (say) Ny of f(¢) in Y such
that £7/(Ny) is not a nbd. of ¢. - '
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Thus for every member N of nbd. system .4 uf ¢ in X we find a point
Xn, (say) € N, such that Xy, €f° (NH“}

_ e, £z, ]ENW ; i (%)

Put D = Collection of all such ordered pairs

= {(xp., N Ne e o )

Then c.onsider the Directed set D = WXy, s Nuj, N € .l <,

Define 5(xu, . _N.L.} = Xn,; Then the net {S, D. <} has the property that
it is eventually in every nbd. N, of ¢; ie. it converges to ¢ in X. but the
image net {f(3), D, <} becomes such that f(S(xy,, N.))=f(xy y&Ny.,
(From *).

i.e. the net is not eventually in N fiey = @ nbd. of f(c) in Y. So Ihe image not
{f(S), D, <} does not converge to f(c), although the net {S, D, <} converges
to ¢ in X—a contradiction. The proof is complete.

‘Definition 2. 4.A filterina Topological 5;3%& (X, 1:} is a family Fof 5ubhctx
of X satislying

(Fl) fAeZandA C B, then B e &
(F2) A Ay s 5 theh (Ay 1Az & &
(F3) &7

For example, the nbd. system .4; if a point x in X is a Filter. Because above

conditions (F.1 — E3) are all O.K. in favour of the lamﬂy v That is why .
is often termed as nbd. Filter,

Definition 2 5. A Filier . is said to converge to a poini x & X, if and on by
if each nbd Ny of x is a member of F{lhdi 15, the nbd system ..I, at x is a sub-
~ family of ). '

‘Theorem 2.3. A function f - (X, 1) = (Y. U) is cnnlinuout; Mx=c eX
. if and onIy if for every Filter 4 on X llmt mnver;—bea to ¢, the image Filter [(7)
converges to f{c¢) in Y.
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Proof : The condition is necessary : Let { he continuous at X = ¢ X,

and let & be a filter in X converging to ¢. Then the nbd. system .k at X
= ¢ is a sub-family of Fie . c F We show that image Filter f(.F) in
Y converges to f(c); That is to show the nbd. system .fg) at fic) as a sub-
family of f(%) or '

;‘lfm o f(.7).
Lot Nﬂﬂ be a nbd. of f(c) in Y. i.e. Ny € . By continuity of fatx

¢, we {ind that gt (Nj(y) is a nbd. of ¢ in X and hence b},r assumption £~ (Nm}}
e 4 ; That means Ny € f(:#) and (1) is verified.

‘The condition is sufficient; Suppose the condition holds. and f is not
cnntmunus at x = c. We derive a contradiction. We find a nbd N fe) of f(c) in
Y such that no nbd N, of ¢ in X satisfies No < £~ F(Ngey):

i.e. no f(N,) © Ny, showing that Ny € foAL). _

Therefore image Filter f(.4;) does not c(lmverg_c to f(c) inY, though nbd. filter

A, coverge to ¢ in X—a contradiction. The proof is now complete.

Theorem 2.4. A point x is a limit point of a subset A of X, if and oniy
if A\{x} is a member of some Filter converging to X.

Proof : Let x be a limit point of A c X, Then if N, € ./ we have N,
0 (Ax]) # ¢

Ifweput = (G X Ny (A\[x)) © G, N, & .k}, then it is not difficult
ot cheek that Gisa Fllter generated by members Ny ™ (A‘h [x}), Ny € .45. Further
A © 6, and, hence %is a filter converging to x in X. Of course, by wnst.ructlen,
A\{x} € %
 Conversely, Let A\{x] be a member of a filter (say) # thal converges o
x in X; That is, to say, % :
A\(x) e 2 skl
- Also the nbd, system .# at X © H:; That is to say, every nbd, N, of x is
a member of #. :
or, N, e # et
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Since % is Filter, we dcdu;e: from (1) and (2)
Ny M (A\[x]) #.6.
That means x is a limit point of A.

Nets and Filters Lead to essentially equivalent theories. Grounds for this
suspicion rest in following Theorem.

Theorem 2.5. In a Topological space (X, 1), If {S,, n < D. S
net converging to u € X, they there is a Fﬂter in X mnvergmg to u; and
VILE—‘L’EI'SII

- Proof : Let the net {S,, n € D, 2} converge to u & X.

For each.n € D, put A, = {S,,, m € D; m 2 n}. Since Intersection of
any two such members contains another such member {A,} generate a Filter
# in X. Now given any nbd. N, of u, we know that the net is eventual

in Ny; That is to say A, < N, for some n. That means My is also a member
 of & ie. the nbd. system .4y at u satisties 4, c %; Hence 3’ converges

fo u e X

Conversely, Let & be a Filter converging to u € X. Put D; = {(x, F) :
x € Fand F € #}. Then D; is a directed set with order > by agreeing to
(Y, G) 2 (X, F) if and only if G ¢ E Consider the net {f(x, F).; (x, F) e D, 2},
Where f(x, F) = x. Then it is a routine excercise to check that this net is

eventual in every nbd N, of u, and hence the net converges to u & X,

§3. Product spaces.

There is a technique to construct a new Topological space out of a given
number of Topological spaces. That leads to the concept of product spaces.

+ Let (X, 7) and (X3, V) be given Topological spaces, and let X = Xy % Xo.

Consider a family 5B of all subsets of X; x X, = X like Gy x Xy and X x
G, where Gy € T and G, € V. Then it is a routine exercise to see that SBis-
a sub-base for a Topology on the Cartesian Product X whose base B consisits
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of all members of the form Gy x Gy, and the Topology generaic. by the base
% g ({Jr by sub-base §8) on X is called the Product Topology on X. Then a subset

V of Xj x X5 = X shall be an open set in the Product Topology if and only
if to each member (x;, X2) € W there Lorreapund open nbds U; of x; in X,
and U, of x, in X, such that

Uy x Uy W,

The given spaces X and X, are often callcd co- ordinate slmu: and two -

functions p,, and p,, that carry a member (X, X3) of X x X5 into x; and into
X3 11:~.pc,ctwﬂlv

e p, X % Xq — X; and p, @ X x Xy — Xp where

pe (X1, X3) = X and prﬁ (X, X3) = X respectively are called pmjécfiuns into
Co- ordinate bpal:f‘b

Projection functions p, and p;, arc here continuous funciions. Be:.:mse if
U; is an open set in Xy we see pfll (U) = U, x Y, and that is an open set in
K= Xl b Xj, j .

Now suppose T is a Topology for X; x X that make projection functions
continuous. Then if U is open in Xl and V'is open in X, then U x V is open
‘relative to T, because U x V = py (U) I p["]{'\»"} and this set is open relative
to T because p.'s are continuous. Therefore T is stronger than the pmduu

topology, and we conclude that the pmduct topology 1s the weakest Topology
on X to make projections continuous. '

)t is now a routine matter to extend {im Definition of Product lopulogv
for the cartesian product X = X; x Xy x .. x X, where. gach co- md,mte
X; is a given Topological space (X, Tj)- Thus a base for the Product Topology
on X consists of all members of the from U; x U x ... x U, where each
U; in open in (X, ), { =1, .. n In paricular, the real number space R
with usual topélogy gives rise [o the product space R" = R x R x i R
(n times) with Product topology; and R" is more commonly known as the

Z
Euclidean n-space.
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I—Iere, we see that each member of R" is an ordered n- ~tuple of reals like (x;,
4 SR ) x, € R. We look at it as a real function x on the set Gl 2 ;1) where
valve at i as x; (= x(0)).

Supposrs we have an arbitrary family of Topological spaces (X, 1), ot & ﬂ—
an Index sét'. Then the cartesian product X = XXy e A) nay be looked
as the set of all functions x on A such that Xa € X, for each index e A In
that case X, is o-th Co-ordinate space and corresponding projection Tunction
Pr. 1 X — Xy is given by p, (x € X) = Ko € X

Consider the family {pL'{'U} where U is an open set is (X, 1)) It
is easy to check that this family of subsets of X is a sub-base for a Topology
on X, and it is the smallest Topology on X to make cach projection function
continuous. This Topology on X is called the Product Topology and X is
the Product space of given Topology spaces (X, To). as o e A.

Theorem 3.1. Let (X, T,)}eep be a family of Topological spaces and
X=X{X,: 06 h} be the product space with Product Tﬂpﬁlag,y Then each
projection function p, : X — X, is an open function i.e. it sends open sets into
open sets,

Proof : Let p, : X — X, bc a projection function. Let G be an open set
in X. If x € G, we find a member of defining open base member, say. D of
the product Topology such that x € D' & G. Then we have

P, (%) € rrru(D} < Py, (G} _ iy
We know that D I{JG]{H like

D=X{Gy: e A}, where Gy, is open in X, and Gy, = X, for all o except
a finite number of o’s (say) = o, O, ..., 0:,1.

" Now, if o = one such oy, we find
Py, (D)= {Fr“k (y):yeD}= Wyt My B G 121Gy, S )
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And if ¢ is none of o, G, ..., Oy we know |

P.(D) = X5 Now (2) and (3) tell us p,,(D) is an open set and from (1)
we conclude that p, (G) is open.

Remgrk : A projection function may not send a closed set into a closed
set. For exa'mpli:., in R?, the closed set {(x,y) € R?: xy = 1} has a non-closed
Projection on each Co- ordinate space. :

Theorem 3.2. Let (Y, V) a topological space and {{X, To) }oea be a family
of Topological space; function {1 ¥ — X = X{X, 1 & € A} is continuous if

and only if the composition function pof : Y — X is continuous for each

ae A

Proof : Let £ ; Y — X be a continuous function. Since X is the product
space with product topology and we know that each projection function p,,
on X is continuous, it follows that the composition p,f is a continuous

function.

Converae]m suppose the condition holds i.e. p.f is continuous for each 0.
_then for each open set U of X, we have (puf) () = f“i{p;'{U)} and this
is an open set by assumption; and product topology of X says that pal(U) is
a member of sub-base for the product topology. This inverse image under f of
a (any) member of defining sub-base member of the product Topology becomes

an open set. That means, f is continuous.
§4. Quotient spaces.
Let (X‘ T)bea Tﬂpnlngical.&.‘.pace, and Let f: (X, 1:} —Y be an onto function.
Let % = {U c ¥ : £4U) € 1}.
Then % forms a Topology on Y. Because
MY U |
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(i) It {Gylusp is a sub-family of #, then G= U G, Y such that

eh
1 Gy =f- t.{ U h}_ U G, e, LﬁL,thL each [ Gy e 1T Su e W
(iii) Let G, H € % and we have { 4G ~ H) = - {G' ™ £ H) which
is a member of T became {~'(G) and £- H) are so. Thus G N H is a member
of . ;
Thus (Y, /) is a Topological space, called quoticnt space.

Theorem 4.1. The quotient Topology on'Y is the largest topolog zy such Lhdl
f: (X, 1) =Y is continuous,

Proof : Let Vbe a Tﬁp(}iﬂgf on ¥ such that [ : (X, T) = (Y. V) is continuous.
Take G e V, then by continuity of £ we have £~(G) is open in X ie. ""{G}
€ T, and by definition of quouem Topology G is a member of the quuucm'

Topnlm,},f on Y. Hence V < Quotient Topology. The proof is complete.

Dchmtmn 4.1. A function f from one topological space into another is said

to be a closed functmn if  sends each closed set into a closed ser.

Theorem 4.2, If f - {X, T — (Y, %) is continuous and onto such that
is either open or closed function, then % is the guotient Topology on ¥,

Proof : Lei (X, 1) — (Y, %) be continucus and onte, and U be a subset
of Y such that f J{U} is open. Hert: 5 g {F'(U] 1s open (f 18 open) in #.
Sc every open set in quotient Topology is open in . If [ is continuous and
open since quotient Topology is the largest Topology on Y for which f is

continuous, # becomes the quaucnt Topology on T,

If fis a ¢losed ﬁlﬂcrmn, we need o replace ‘open’ by ‘closed’ in argument
above for desircd conclusion.

Example 4.1. Let X = {(x,y) e R*:x=0ory=0} Show thai nrojeumn
function P(x, y) = x for (x, y) € X is Limed but not open.

Solution : Take ;m}f closed subset of X it is mapped h}' P into amuicmn
{0} which is r.:lmed. but not open.
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Let (X, 1) be a- given Topological spaée, and let R be an equivalence, reletion
on X. Then X is partitioned into disjoint equivalent classes; denote the set
formed by these classes as X/R, called quotient setL.

If a € X, let D, denote the ‘equivalent’ class containing a. Thus Dy = D,
if and only if a and b enter the same ‘equivalent’ class i.e. if and only if
(a, b) € R(a R b).

, an:d_eﬁnc h: X — (XR) where h(x) = Dy, x € X. Then h is ontw. Also
construct a family Tg of subsets of (X/R) by the rule :-
= {Kc (X'R) : h"Y(K) is an open set in X}
 That is to say, g = {K c (X\R) : h(K) e 1.
Then we verify that Tg is, indeed, a Topology on (X/R). -
Because (i) ¢, (X\R) € 1x. :

(i) If {Kq)eea be a sub-family of 1x, and K= UK, .

e

Then h™ (K)=h™' (UK, ) = U h™(K,) & T since each member h~' (K, Je7

oen el

which is a Topology on X. That shows K & Tg.

(iii) Similarly we can show thal'intm'sécﬂcn of two members of Tp is &
member of Tg.

_This tapclc}gy T on quotient set (X/R) is called the quotient Topology and
Topological space (X\R) is said to be the guotient space. '

Theorem 4.3, If © denote pmjectién of (X, 1) onto the quotient space
(X\R), then following statements are equivalent,

_ (a) T is an open function and (b) If G is open in X, R[G] is open.
Proof. For each subset A of X, we have R[A] = _"'(n[h]'};l

(a) = (b); Let m be open. If G is open in X, by continuity of
projection function m. We have n~'(n[G]) is open ie. R[G] is open. Thus
(b) holds. : '
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(b) = (a); Let (b) hold, If R[G] = ' (n[G]) is open, then, by Definition

of the quotient Topology, n[G] is open, and so = is open.

b2

Exercise - A
Short answer type questions

In 19(is the set of all natural numbers, construct a co-finite Topology Ty on I

Is Ty @ filter 7 Give reasons.

~ Show that a sequence (x,} is a net.

.~ Give an example of a Projection.function that is open, but not closed.

LetP=a=xp<x <o, = . b) be a Pattition of a closed interval [a, b].
Let & denote the f;.umly of complements of all partitions of [a, b]. Show that E_,

isa Dircr:tcd set. .

Let I and J be two non-degenerate intervals of reald with usual topology. Show

that any homeomorphism h : 1 —= J is monotonic.

It (X, %) is a Topological space, and f: X — R of reals with usual topology,

is continuous, show that the set {x e X : -1 <: f(x) < +1} is an gnep e
in.x.

- IF @2 (=1, 1) — Reals with usual Topology is given by

< i
tp(ﬂ:m; as =1 < x < +1.

Examine if ¢ is a Homeomorphism,

Exercise - B

In a Topological space (X, 1) a subset G is open if and only if G is a member

if every Filter that converges to a point of G,

Show that all limit points of a net in a Topological space form a closed set.
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In a Topological space X let @, denote the_ collection of all Filters caéh of which
converges to X € X ; Show that A{F . Fed,) is equal to the nbd. system

“oily a!‘.:u

{X ) — (Y, 1=’} I:ne a continuous functmn If A c X, show that restriction

i f;,; is-a continuous function on A Is the converse true? Give reasons,

If {X 1) and (Y, V) are Topological spaces show that a bijeciive (1=1 and onto)
function f: X — Y isa humﬂmnorphmm if and nn!y if f(A)= ff A) for every
subset A of X, bar denntmg the closure.

Show that the family of all subsets of a non-empty set X each of which contains

a gwcn element xy € X is a Filter on X. Examing its maximality.
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Unit 3 1 Separation Axioms in Topological Spaces

(Separation axioms Ty, Ty, T, T3, T4 in Topological spaces, Their implications
and characterisations, Produet of T;-space, Regular spaces, Normal spaces,
Completely regular spaces, Tychonoff spaces, Urysohns Lemma in Normal
space, Tietze extension T heorem, Emhédding in cube, Embedding Lemma
and Theorem, Metrization Urj@;iﬂm’s metrization Lemma).

§1. If there are too many or 0o few open sets in a Topological space (X, 1),
analysis thereupon may not be interesting and useful, For exampleﬁevery
function over (X, ) with T as discrete Topology becomes continuous. There
arise several separation axioms in (X, 1) in terms of availability of open sets
in X. These axioms are presented below in graded style - which one is weaker .
or stronger than the other. Let (X, 1) be a Topological space.

Definition 1.1. (X, 1) is called a To-space if given two distinct points in
X, there is an open set containing any one but not the other

For example, real number space R with usual topology o e
is a To-space; because given x, y € R with x = y, one can
find an open interval containing X leaving v outside. Also
there is 2 Topological space like (X, t) where X = (a, b, ¢) (a, b and ¢ are distinct)
and © = {¢, X, (a), (b, ©)], such that (X, 1) is not Ty; because distinct points
b and ¢ have no Ty-separation i.e. we do not find any open set in X to contain
one without containing the other, |

Definition 1.2, (X, 1) is called a Ty-space if given any two distinct.
elements in X, there is an open set to contain each one of them without
containing the other,

Explanation : There are many T-spaces; for example, .‘
space R of reals with usual Topology. Consider a Tupnlogiqal :
space (X, 1) where X = (a, b, ¢), a, b are ¢ are distinct, and © = {, X, (a),

(a, b)}. Here a and b have no attracting open sets in T as per T;-stipulation.

50 (X, 1) is not T;. Definitions above have been so framed that Ti =1
i.e. every Ty-space is a Ty-space; opposite implication is however false.
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Example 1.1. The space (X, ©) where X = {a, bL a#b;ana T={¢. X,
(a}} is Ty without being Tj. -
Solution : Here for distinct elements a and b we have an open set (a)

containg a without containing b; and this pair does not have a T~ separation;
because only open set to cover b is (a, b) that cuts {a}.

- Definition 1.3. (X, 1) is called a T-space or a Hausdorff space if given
any two distinct members X and y in X, there are open sets U and V xuch that
xeUyeVandUnV=4¢

Explanation : Here T, = T); and if (X, 1) is a Topological space where
X ={a, b} ab;and t= {¢, x,(a), (0)}. Then (X, 1) is Ty, Example 1.2 shows
there is a space (X, 1) that is T, without being T». i

Example 1.2, Let X be an infinite set and let the collection % of subsets
of X be as % = {G c X : (X\G) is a finite set (may be empty)}. Then
we verify that % is a Tupningy on X, very often named as co-finite Tupnlogy :
on X. This Topological space (X, @) is Ty without being T3, Take two
members v, v € X with u # v. Then U = X\{v} and V = XMu]} are two
‘members of % containing u and v respectively such that v is outside U and
u is not in V. Hence (X, %) is Ty. If possible, let any two distinct points
x, y in X have T, separation. So we find two open sets H and K in X

such that x  H, y € K and H K = ¢, Clearly (X\H) and (X\K) are each
finite subsets of X; and so. '

(OH) u (XAK) -~ is a finite set in X,
ie. X\H N K) is a finite set in X, :
R S is a finite set, because H M K = ¢.

This is a contradiction. Hence our assertion stands.

Theorem 1.1. If (X, %) is Ty, then closures of distinct points in X are
distinct. :

Proof : Let (X, 'r,} be a Ty-space; and let x, y € X with x #y. We show

that either x & {3’} ory e {x}, bar denoting the closure. By To-separation we
~ obtain an open set U containing (say) x without containing y. That is to say,

xeUandyeU;
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Thus a nbd. of x does not cut the singleton {y}: So x is not a dimit point ;
of (y}. As X #y, we ha e x e{y}. Of course x €{x}. That means {x}={y}.
Theorem 1.2. (X, ) is Ty if and only if every singleton is closed.

Proof : Let (X, 7 ve Tyand x e X. If ye X and y # x, hy T y-separation
we find an open s« U such that

: xelUandyeU,
Clearly then y is nol a limit point of {x} ie. ye{x} (derived set of {xh
Of course x ¢ {x}’. That means no member of X is a member of {x}’. Hence
x}'"=6; So
(X} = DU x) =ix}
ie, {Xx] is closed, -

Conversely, suppose every singleton in (X, 1) is closed. Take x, y € X with
X # ¥. So singleton {x} is closed, and hence X\{x} is an open set containing
y (without containing x); and similarly X\{y} is an open set Lontammg X
(without containing y). Thus (X, 1) is T;.

Theorem 1.3. (X, 1) is T, if and mlly if everjr net in the space converges
to alinost one point in X.

Proof : The condition is necessary, Leat (X, 1) be T, (Hausdroff). 1f x and
y are two distinct points in X, they auract disjoint neighbourhoods U and 'V
confaining x and y respectively by T, separation. Since a net can not be
eventually in each of two disjoint sets at the same time it follows that no net
in X converges to both x and y simultaneously.

The condition is sufficient. Here assume that the condition holds, If
possible let (X, 1) be not a T,-space, and let us suppose a and b are two distinet
. members of X such that every nbd. of a intersects every nbd. of b, Now nbd.
syslem .4 at a is a directed set and so is the nbd. system .4, at b. Let us order
their product (Cartesian) .4; x .4, by agreeing that (T, U) = (V, W) if and only
if T <Vand Uc W, For each member (T, U) e.4; x .4, we have T n U 2
¢. Take a point xip yy € (T ™ U). Thus if (V, W) = (T, U), then Xovw) S

N W} < (T n U), and in cnnbequence the net {K{rm: e(T, U} .a, x4 =)
: converges to both a and b simultaneously—a contradiction.
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Theqrem 1.4. A pro_duét of Ty-spaces is a 'Ty-space.

Proof : It x and y are two distinct points in product X{X,, 1 0. € A}, then
Xg EVa fot Some o A, IF each co-ordinate space s Ta, we find disjoint open
nbds U and V of £, and yq respectively, and Pr_ 1’ (U) and P'{.: (V) become disjoint
open nbds of x and y respectively in the product space X{ Xy : o0& A} with
© product Topology. ' ;

Definition L.4(a). (¢, T) is said to be a regular space if given any closed
get Fin X, and an uutsidé'])nint x in X (¢ F), there are open sets U and V in
X such that ' '

YeUadFcVwithUnV=i

(b) A regular space which is also T, 18 called a Ty-space. _

Explanation : Take X = (a, b, ¢) and a Topology T = {§, X. (), (b, ¢}}
in X. Here only closed sets are X, ¢, (b, ¢) and (a). We verify that (X, T) is
a regular space, and this regular space is not T,: because singleton (¢) 15 not
a closed set in (X, T). '

Further T3 = T, (and hence = T; = Tp).

As singletons are closed sets in T,-space, we have Ty = T,

Definition 1.5(a). (X, 1) is called a Normal space if given a pair of disjoint
closed sets F and G in X, there are disjoint open sets U and V such that F <
Uand Gc V. : % : :

(b) A normal space which is also T; is said to be a Ty-space.

Explanation : Take X = (a, b, ¢. d e, D) and T = (9, X, (&), (D), (e, f). (a.
b, €). (c, d, b, (a, b, &, 1), (¢, d, e, D}; Then (X, 1) s a normal space. There
“are only four paits of disjoint non-empty closed sets : they are ({a, b), (¢, d)),
({a, b), (c, d, 1)), ((a, b, &), (e, d)) and ((a, b, e), {c. d, ). Each pair is separated
- by pair of disjoint open sets ((a, b, ), (¢, d, D).

This normal space (X, T) is not regular; Because (4, b) is a closed set ip
X with ¢ €(a, b); there 1 no disjoint pait of open scls in X to separaie then

Further T; = T3 Because if F is a closed set, and x is a point ¢ F in a Ty
space (X, T), we see that singleton {x} is a-closed set in X. So by normality
of (X, 1) desired separation is immediate. So (X, 1) is a Ts-space.
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Definition. 1.6(a). (X, 1) is said to be completely regular if given any
closed set F and a point x eF, there is a continuous function f : X — [0, 1]
such that t(x}l 0 and f{u} |l forueE

(b) A completely regular space which is also Ty is called a Tychonoff
space often designated as T,,-space..

Theorem 1.4. A space (X, 1) is Normal if and only it for every closed
set I and open set H containing F there is an open set G such that

FcGecGcH,

(Pushing a pair of upen and closed sets (G, G) in between a given pair
of closed and open sets (F, H).

Proof : The condition is necessary : Let (X, 1:) be a m::rmal space and
Let F and H be a pair of closed and open sets in X such that

FcH,

Then complement of H = H® is a closed set with F » HE = cb By norma]:ty
axiom we get a pair of disjoint open sets G and M '\ﬂll"-}f}!mg

FcGand H*c M and G n M = ¢,
" Thus G = M°; and HY M gives M° < (HY° = H. As M is a closed set,
we get
_FchﬁcM“cH.
That is, Fc GG cH. .

The condition is sufficient. Suppose the cﬂnditmn holds. Let Fy and F, be
a’ pair of disjoint closed sets in X.

Then we have F; < F,° which is open.
Hence by the condition assumed we find an ﬂjgren set.G such that
FicGeGeF,",
Now G cF,® gives F, «G*, and, of course, G G. So,
: . : =i

Thus Fy ¢ G and F, ¢ G where G and G+ is a pair of disjoint open sets
in X. Hence (X, 1) is normal.
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Theorem 1.5. (Urysohn’s Lemma) : In a normal space X if A and B are
disjoint closed sets in X, there is a continuous function T : X — [0, 1] such
that f(x) = 0 if x € A and fix)=1if x € B,

Proof : Let (X, T) be normal, and A, B be a pair of disjoint closed
sets i.e. A N B = ¢ So A ¢ B® which is open, B® denoting the complement
of B. So Theotem 1.4. applies and we get an open set (say) = G, such .
that

!!'!.CGJCE'LCB“' : (1}
1 : A
Now pair (A, G ;) is a pair of closed and open set with A < G, and, as

before, calls for an open set, say = G, such that
"AcG;cG, cG; (2a)
; 4 4 2
and by a similar reasoning there is an open sct (say) = G, such that
4

E CG; C{_:T
¥]

cB* .
: s @)

So (2a) and (2b) give
AcG,; cG, cG
4

1
i 3

=G

cGicG; cB® 2)

Tt
I
+I|

We continue this chain and for each dyadic rational of the form ~2m—n (n=
1;2, ..andm=1,2, .., 2"} in [0, 1], we designate an open set G, with property
that for any two.dyadic rationals /; and /; in [0, 1], Iy < [, gives
AcGy, cG,, <G, =G, =B*.
"We know that collection of all such dyadic rationals in [0. 1] is dense in
[0, 1]. : '
" Let us define f : X — [0, 1] by the rule :
f(x) = 0 if x € every member G;
= sup 1 x e Gyl
So 0 < f(x) < 1 for x € X; Further from definition above we have f(x)
~0if x e A, and if u €B; as G, =G, cB*, we see that u ¢ G for every

51



l. By dense property of the set of all I's we deduce from f(u) = sup {/ .
u \E'Glr]' = L. : ;

It remains to work that f is continuous: Since intervals like [0, a) and (b,
1] where 0 < a, b < 1 form sub-basic open sets in [0, 11 with usual Topology
of reals. it suffices to show that £! [0, a) and ! [b, 1) are open sets in X. Now
we can cheek '

0, a)= {.x €eX:0 < f(x) <a)
= {x e X % G form some | < af
| = ;E,LG” which is an é}pen set in X,
Also (b, I)= (x X : b < fx) € 1)
= {x e G¢ for some [ > b,
QJHJG_;‘, a union of open sets = an open set,
The proof is now complete.

Corollary 1.1, Let X be a normal space, and let A and B be a pair of disjoint
closed sets in X. Then there is a continuous function 2: X — [a, b] such that
gx)=aforx € A and g(x) = b for x B,

Tike g = (b - a)f + a as f appearing in Urysohn’s Lemma, :

Example 1.3. In (X, 1) if for any pair of disjoint closed sets A and B there
is a continuous function f : X — [0, 1] such that fix) = 0 if x € A and fix)

= 1 if x € B, then (X, 1) is Normal, :

Solution 3 Under the given hypothesis. put
6= . 13 eoifg b R - ) F._—‘—'.[._l. 1

G—{J{EX ! fl.ix}f.g}-t [ﬂ,z) and H {xe}{ st(x) ::»2}-{ 50 ]J'

Since [Gi %) and [% l] are open sets m [0, 1] with usual topology of reals,
and since f is continuous it follows that G and H are a pair of disjoint open
sets in X satisfying '
; AcGand BcH. .

So (X, 1) 1s normal.
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Theorem 1.6. A product of Tychonoff spaces is a Tychonoft s;pm:c.

Proof : Given a Topological space (X, 1), and a continuous function f :
X — [0, 1] with usual topology of reals, let us make a conventiﬂn -

If x e X, and U 15'a nbd. (:rf x, we say that f is for a pair (x. U) if f{x} =
0 and f(u) = 1 if u E(XIU}

Then if f, {3, ..., f;, are functions for (x, Uy), ... (x, U“} (n = a +ve integer),

and if g(x} Sup{t {x}} x & X, we see atonce that g is for the pair [?L MU ]
i=1

I=izn

Therefore, the space (}L, 1) is completely regular if for each x and for'each nbd.
[J of x (one may take U as a sub-basic member of 1), there is a function for
the pair (x, U).

Suppose X = the product X {X,,: ote A} of Tychomif spaces X, and take
x € X Let U, be a nbd. of x, in X If fis a function fcu {xu, Ug), then fuP,,
- (P, =oth Projection function) is a function for {x P s 4 }) Now family of
sets like P! (Ug) constitute a sub-base for the pmduct Topolngy - and therefore
the pmduct space is completely regular. Since product of T-spaces is again a
T,-space, we have proved Theorem.

Theorem 1.7. (Tietze Extension Thearem} Let (X 1) be a normal space,
and F be a closed sub-space of X, and let £ : F — [a, b] be a continuous function.
Then f has an extension h over X with values in [a, b].

Proof : Invoking corollary 1.1, we may assume that a =— 1 and b = 1.
Put fo=fand Ao ={xeF: f;,(x)i—%}.-Bﬁ ={x :'fu{x‘l«'~r So Ag and By

are a pair of non-cmpty disjoint closed subsets in F, and hence are also closed
in X. because F is closed. Now apply again corollary 1.1 to find a continuous

function g X - [-%fé]auch that go (Ag)= {-*} and gu{Eﬂ}-—{ }

Define f; = fy — g0 on F: then |f, {x}[i—i— for all x € F.

CIf A1={x:f1{x]if—%)(%)}, and
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(MY mmmarcno={(-E s o

—

Then: by reasoning as above, there is a continuous function

(8
[ i S

J}

-+

-\.M‘-l‘-.i-

Next, define f onFby f, =i"; —81 =fo—{go +g, ), and xeelhaufa (wc y|i:[

\.u|tx.a

We continue this procew to obtain a sequence fhe fo ot dehnec} on F

- .
such- that |f, (x}|£(-§) and a sequence {gg, g, il dcﬁned on X such
: ! _I ; -! 2 n s : ’ "
that [g. (x)|= -3—(5) with  property that on F we  have
f, =g ~(gp+g;+ ... + 81 ). Define Sy =2+ B+ ..+ g4y, We treat Sy, a8
n-th partial sum of an infinite series of functions (real-valued) over X. We know

that the space C(X, R) of all real-valued continuous functions with sup norm

- becomes complete ;

As an'{X}iE%(i] and since E -1--(;-) =1, We conclude that {8}
2 n=()

converges uniformly to a bounded continuous h such that |hixil<1 over X,

We may conclude our proof by the observation that P 5( } and {8,,]

f.ult«.-

converges uniformly over F to f; which is equal to f, and that h equals to f over

'F, and h is a continuous extension of f over whole space X which has the desired

property.

Remark : Theorem 1.7 is not true if we remove assumption that F is
closed. For example, take X to be the closed Unit interval [0, 1. and take F

c X as F = (0, 1]. Then look at f: F — [=1. 1] where f{x} = un— Then f

is continuous, but f does not admit a continuous extension over [0, |].
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§2 Embedding in Cube.

The Cartesian pmduct of clnsed unit mtervals Q =10, 1] WIﬂ] product
.tﬁpnlegy is called a cube.

So we look upon a cube as thf: set Q™ of all functions on A to Q. Suppose
F is a family of functions such that each f e F acts on a Topological space X
to a space Y (Y may be different for different f € F). Put X{Y;: f € F}. There .
‘s a function e @ X —> the Product, often named as evaluation function where
e(x € X); = f(x). I is seen that if members of F are continﬁcsus? then evaluation
{unction e is continuous. F is said to distinguish points of X, if given X, y € X
with x # y, there is a member f € F such that f{x} 2 f(y). F is said to dmmgunh
_ points and closed sets if for each closed set A in X and x & (X\A), we find a
member £ & F such that f(x) & F(A).

~ Theorem 2.1. (Embedding Lemma). Suppose F is a tamily of continuous

functions 1 X — Y (}.(,LY-[ are Topological spaces): then

(a) Evaluation function ¢ : X — X {¥y: f e F) is continuous.

(b) e is an open function of Xontoe[X] if F distiugmshes points and closed
sets: -

(c] is 1 - 1 if and Gnl';f if F distinguishes points. :

Proof : (a) we see that compoesition of evaluation function ¢ with pmmstmn
function Pr, L€ Pr.€ is equal to f; and here we know that p,o e 1$ continuous,
because [Pr;*e)f”:”“]* Consequently ¢ is continuous, by Theorem 3.2 '
~ (Unit ID). :

(b) It suffices to show that image under ¢ of an open nbd. U of x contains
e[X]n anbd. of e(x) in product. Take a member f € F such that f(x) ¢ closure
of f(X/U). The set of all v in the product such that y, & f(X \ U) is open, and
its intersection with e[x] is a subset of e[U]. S0, ¢ is an open function of X
onto e[X]. Now (c) 18 clear.

55



Theorem 2.2. (Embedding Theorem). (X, 1) is a Tychonoff space if and
only if it is homeomorphic to a sub-space of a cube, ;

Proof : It is a routine verification that the closed unit interval with usual
topology of reals is a completely regular space and it is also T(. So it is
a Tychonoff SPIEICE.'AH product if Tychonoff spaces is a Tychonoff space.
S0 a cube is a tychonoff space. Each su'b-spar:e' of a cube is therefore g
Tychonoff space. We now observe that if X is a Tychonoff space and F is
is the collection of all continuous functions on X to closed unit interval,
then by Embedding Lemma Evaluation function is a homeomorphism of X
into the cube Q7

$3. Metrization :

Metrization problem in Topology deals with obtaining necessary and
_ sufficient conditions for a Topological space to be metrizable. A partial answer
to the problem had been given by Urysohn as early as 1924 through a
Theorem, better known as Urysohn's Lemma that we present below. We know
that the sequence space 1 of all real sequences x = {Xj. X2, .. X, ...} such

that Ky' <o iS5 a metric space with a metric d eiven by dix. v
_ P g b7 :

n=1

- W
=[Z(?§n =Yu }3] » Where x = (x), x5, ..), y = (¥i» ¥2, ...} & 5. This
n=| :

sequence space I, is a known as a real Hilbert space,
Theorem 3.1. (Urysohn’s Metrization Lemma)

If (X, 7) is a secon countable normal T,-space, then it is homeomorphic onto
a subspace of I, and hence is metrizable,

~ Proofl : Without loss of generality assume that X is infinite. Since (X; 1)
is second countable, it has a countable open base, say B = (G, G, ..., Gy, ...),
each G; being different from ¢ and X, If p € Gy, since X is Normal and Ty,
we find a member G; (say) of B such that

pel. =G o, - (1)
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Put Q= {(G;,G 1:G;: <Gy ). clearly Q is countable.
and let us write Q = {Dy, Dy, ...},
For each ordered pair Dy, = (Gy, Gy), (say) with G, < G« we find the pair
_ (E; Gy } (*c’ meaning complement) as a pair of disjoint closed sets in normial
space (X, 1), and hence it invites a continuous function f,; : X — [0, 1] such
that

f,(G)={0)andfy (GEI=(1) -~ e
Define a function f(x) on X by

f(x}z{j"] f:{}fifz {x}i'“ﬁlfﬂ EX},...},
i & I

For each natural number n. we have 0<f,(x)<1.- and hence

2
o ix1y 1 L =
( n.“ ] <—-, and we know that the series E—-;- 2
it e N7

o 2 .
Therefore E( L (x}] <es as X € X. So f(x) is a member in I,
n 4

n=|
ie f: X — l,. Now f has following properties :-

(a) fis 1-1. Let x, }"e X with x # y. By Ty-separation we find Gk e B such
that x € Gy and'}r ¢ Gy. Then from (1) we find G; € B such that

x€6; €G; =Gy _

From (2} f(x) = 0, % e G;and f(y) = 1; That is to say, nth term of the

sequence f(x) = 0, but nth term of the sequence f(y) shall be 1 Thus f(x) #
h

f(y). Hence f is 1-1.

(b) f is continuous. Let x, € X, and € > 0 be given. Take y € X with y
# Xp. Then

) i ] ;
i) == t, ,_f ,.n,_fn pAad E
. f(y) { (}’)2 2 (y) = {y) }
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ﬂﬂd.ﬂ:xuj {f!{x[#} f-'{x[:l} lfn{xl; j,--.}1
n :
Since value of f, lie in [0, 1], we have

[t ()= fa (x0)]° o dolhis
fi 2 ) shoms _ ' S )

Since E‘—* <%, we find an mteucr N, (mdepfznduﬂ of y and xy), such that -
n=|l :

. |
2 e _ | @)

n=ny +1 n-
By continuity of f; at xy, for n=1, 2, ..., ny we take open sets V,, conlaining
Xp such that
&
aly)~fa (x0)]” &2
<=

I'Iz Enu

whenever y € ¥, Sk (5)

Taking V = ﬂv we see V as an open set containing xu such that for
n=l

Efrnw} 5 (%)

ye‘f d{fty:rf{xﬁ} i

n=l

2 [y (¥)=Fa (x0)]"
<3 ™ +=e?  from (3) and (4)
n=1 &

{i—ﬂ--nn +EZ* by (5)
=ef
So, d-{f[y} — f(xg)) < € whenever y € V.
Hence f is continuous of x;. |

() £ : £(X) = X is continuous.

Take xy € X. There is G; € B such that x; € G,.c G, G, by (1). Let

= pair {G;, Gk} Choose & such that 0 {e{—l-

ZH{. :
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Then d(f(y), f(x0)) < €.means

o fn{}'r)_fu(xﬂ }|2 [ 1 Jz
Z , <
iy n- 2y

: . P L
and hence [T, '[}“}‘f'n., (Xg ) ‘11

Since x4 € G; .fy, (xg =0, and hence fa, E}'}‘i‘i-

Since f,, (Gﬁ } = {1}, We see atonce that y ¢ G} . Hence y € Gy. Therefore

d(f(y), f(xg)) < € implies y € Gy. So f! is continuous at f(x,) € f(X). From

properties (a), (b) and (c¢) it is shown that f is a homeomorphism of X Dntd a .

sub-space of I; i.e. X is hnmcnmnrphm to a sub-space ot metric space /5. The

pmof is now complete.

o Lh o e B

Exercise - A
Short answer type guestions

Give an example with reason of a Topological space on which each real-valued
continuous function is constant.

Show that each normal T-space is a Tychonoff space.
Show that every Ti-space is a Ty-space.

Show that a compact (see unit IV) subset of T;-space is closed.

Show that a finite Topological space that is T, has discrete Topology.
In a Hausdorff space X if x € X, show thar

ﬂ{ﬁx: N, € ;I;} ={x}, bar dcnr:-.ting the élnsurt, and ..{; denoting the nbd.
system at X.

Exercise - B
If X is an infinite set, Show that smailﬂst Ti-Topology in X is its Ci} finite
Topology. L

Let f, g : X — Y be continuous function where X is a Topological space and Y
is Hausdorff, Show that the subset = {x € X : f(x} = g(x)} is a closed set in X.
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Let X be a Topological sapce. Prove that following statements are
equivalent —

@) X is T;.

(b) Every singleton of X is closed.

(c) Every finite subset of X is closed.

(y If x e X, n{N.: N, .81 = {x].

i Show that every metric space ts Normal.

._Lx:!' X be a HausdorfT space and f ; X — X be a continuous function. Show
that the set {x € X : f(x) # x} is an open set in X. '

Show that a Compact (see unit IV) Tg—s;pac'e. is metrizable il it is seconc -
countable.

Show that a homeomorphic image of a Hausdorff space is Hausdortf.
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Unit 4 J Compactness in Topological Spaces

{Uben cover, Sub-cover, Compactness, Countable open cover, Lindelofl
space, Lindeléff Theorem, Properties of compact sets, Finite intersection
property, Iis relation with compactness, Tychonoff Theorem on Product of
Compact spaces, Continuous image of a compact space, Locally compact
spaces, I-point cumpac'tiﬁm{inn}.

§1. Heine-Borel Theorem is a wellknown phenomenon in real analysis. The
essence of this lies in Compactness in a Topological space (X. 7).

Definition 1.1(a). A family % = {Ggluea of open sets Gg in X 1s said
to be an open Cover for X il X = U G4

ageh

(b) A sub-family # < %is said to be an open sub-cover for X if 7 is itself
an open cover for X.

* For example, the family 0 of all open intervals like (a, b), a, bar reals with
" a<b forms an open cover for the space R of reals with usual topology ; because
each open interval (a. b) is an open set, and the sub-tamily B8y of 8 consisting
- of all members like (-1, n), n = 1, 2, ... also forms an open cover for R, and
' l:]u is a sub-cover for R.

Definition 1. 2. (X, 1) is said to be mmpaa if each open cover lor X
has a finite open sub-cover.for X, '

Explanation : The real number space R with usual topology is not
cnmpﬁmt. Bacausé'open cover consisting of all open intervals (-n, n) does not
have a finite open sub-cover for R. Ofcourse, there are many compact spaces ;
* for instance every finite Topological apace is compact.

Example 1.1. Let X be an‘infinite sef and T be the Co ﬁnste Topology for
X ; Then (X, T) 18 compact.

Solution : Let % be an open cover for X and fix a member G{x of . T'hnn
(X\Gg,,) is a finite set, say, = (X}, X2, ..., Xp) In X, Since G is an open cover -
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for Xie X =U{G : ot €A} there are members Gﬁt, Gy vons Gg,, of % such
that xj € G, 1= 1, 2, ..., m. Then Gy Gy - .+ Gy, phus Gm all together
form a finite sub-family cf % such that X = Gy, W Gy W .. U {110“ 1 GUt
Hence (X, T} is compact.

- Definition 1.2. A subset E of (X, 1) is said to be compact if as a sub- apm,e
with relativised Topnlngy E becomes a compact space.

Definition: 1.3, (X, T) is called a Lmdcloﬂ space if every open cover of

X has a countable open sub-cover,

For mamplu it follows from Definitions that every compact space is a -
Lindelsff space.

Theorem 1.1. Every second countable space (X. T) 1s Lindelft.

Proof : Let (X, “i!:j be a Qes;ond countable space with (Wi, Wo, . W, )
as & countable open base for 1. Now ke % = {G&}ﬁe A be an open cover for
X Corresponding to any x € X, there exists some e A such that x e Gyt we
find a base member, W such that x e W < G,. The corrésponding base members
{W} form a part of {W, W, .., W,,, ...} and is a countable sﬁb-i’amily of (W,
Wi, ...}, say, {W,”. Wiy oo Wy o} 3 Now each Wy, © Gi—some member
of €1 =139 . Then '{GE, G, ...} 18 a countable sub- famliy of % to 1ct as
a sub-cover for X; and (X, T) 15 a Lindelsff space.

Corollary 1.1. The space R of all reals is a second countable space and
is therefore a Lindeldff space, without being compact, with usual mpbingy with
basis consisting of intervals (a, b), a and b rationals. Thus a Lindelsfr qpaLe
nccd not be a compact space,

Remark : Theorem 1.1. is often named as Lindel6ff Theorem.

Example 1.2, Continuous image of a Lindeloff space is a Lindelitl space.

Solution : Let f: (X, 1) — {Y V) be a continuous function where (X, T)
is Lindeldft, and (Y, V) is any Topological space. We show that {(X) is a

Lindeldff sub-space of (Y, V).
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Take {Gy) e a be an open cover for f(X); put Gg = f(X) M Hy, where H
is open in (Y, V) for each O € A. By continuity of f we have f‘iEHu} is open’
in X for each ol € A,

Nﬂw fxX)= UG, c U (Hy,):

[y 3= EA

aeh ned

S0 KCf“( U He ]= U f“(Hu}.

That is to say{X: L £-' (H, ); Hence the family {f = }} forms an

HES
open cover for X. As (X, T) 1s Lindeloff, there is a countable open sub-cover
for X, say.

X=f Hywf M) vt H

So, r(X)=UH,.
n=1

Thus f{X}:f(X)ﬁ(ElH ] UfKX)nH, = UG ;
n=l

n=1

So, {G,} becomes a countable sub-family of {Gu } ., to cover £(X).
Hence f(X) is a Lindeldf sub-space of (Y, V).

Theorem 1.2, Every closed set in a compact space is compact.
Proof : Let (X, 1) 1:-1: a compact space and E be a closed subset in X.

So its complerent (X\E) is open in X. Suppose {Gu } ey bean open cover

for Eie. Ec U G ,»¢ach Gy being apen in X. So the family {Gq }[m and

HEd

(XAE) form an open cover for X, by compaciness of which we find a finite a.uh-
family of this enlarged family as an open sub cover for X. Let G‘*: Ga3+
Gg_ and possibly (X\E) form a finite open suh_-cmrer for X, and hence from
a finitc open sub-cover for E. Clearly {Gg . qu, o G} is a finite open sub-
cover for E, and E is compact.

63



Remark : Coverse of Theorem 1.2 is not frue. For example, take
X = a, b with topology T = {¢, X, (a)} Then the subset (a) is not closed in
(X, 7). However it is compact m (X, 1).

Theorem 1.3. Every compact subset of a Ty-space is closed.

Proof : Let (X, 'ﬁ} be afI‘g—sp'ace and E be a compact subset of X. It suffices
to show that [X\E} is open in X; without loss of generality take (X\E) d, and
x € (X\E). If'y € E, we have x # y, and by T,-separation we find two disjoint
open sets V,, and Wy such that x € Vyandy € Wy wuh "J M Wy =0; So

V(:{XHW} : WO A

Now Ec UJ W, ; showing that the family (W, } _is an open cover for E,
yeE ¥k

by compactness of which we obtain a finite number of members, say,
W},l, Wy, ..., Wy out of this family such that
= bt 13

]
Ec UWw,, i (2)
: k=1
Look at the corresponding open sets Vy ) “v’ V-‘fn each containing X,
and put
GV, N il iy (3)

Clearly G 1s an open set containing x such that (from (1) and {3})'
G (XA\Wy, )n(X\W,, Jn..a(xvw, )

= X(W,, UW,, u..UW, )
< (X\E) by (2).

Thus for each x € (X\E), we find an open set G céntaining % such that G
€ (X\E); Hence (X\E) is open in X,

Theorem 1.4, Show that a subset E of reals with usual Topology is compact
if and only if E is closed and bﬂunded

Proof : Let E be a bounded and closed set of reals in respect of usual
Topology nf reals. Suppose [a, b] (a < b) be a closed interval such that
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E  [a, b], since E is bounded. We appeal to Heine-Borel Theorem o say
that [a, b] is compact ; and Now Theorem 1.2 applies to conclude that E
is compact, : :

Conversely, suppose E is a éumpacc set of reals with usual topology which
is Ty; we apply Theorem 1.3 to see that E is closed. Finally. we see that

Ece Ut~n.n); So the family {(=n, n)}; = 1, 2, .. 18 an open cover for E, by

m=l I
compactness of which we find a finite number of members (-nj, ny), .. -

k s
(—y, ng) with np < np < .. < Ok such that Ec U (=n; .n; )=(-ny ,ny ) and

=l

hence E is shown to be bounded.

§2. Definition 2.1. A family # of subsets {Fg) _, in a topological space
(X, 7) is said to have the finite intersection propeity (ELP) if every finite

subafam-il}r {F., +Fa, .,.,.,Fu“ } of & has non-empty intersection i

QFui =0,

For example, every decreasing sequence {A,) of non-empty subsets Ay, of
X has ELP. ; because every finite sub-family of {A,} has the smallest member
(# 0) as its intersection.

Theorem 2.1. A topological space (X, 1) is compact if and only if each
family F = {Fg} _, of closed sets with FLP has a non-empty intersection.

Proof : Let (X, T) be compact .and F = {F@}HE , be a family of closed
sets with FLP. If possible, Let [ Fy =¢. That means X = 1) (XIE, ) whete

HEA oEed
‘each (X\Fy) is open ; and hence the family {(X\Fgy) : Fg€F} 1s an open
cover for X. By compactness of (X, 1), there is a finite family, say,
(XAFy). (X\Fp), .., (XAF,) of this family to cover X.

Sa we have X c ij{'x\.]:i), and taking the complement, we duduce that

o} :
B =¢-a contradiction that F has ELP.

=1
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Conversely, suppose the stated condition holds without (X, 1 being
compact. We seek a contradiction. Let % = {G;}i:j be an open cover of X tha

has no finite sub-cover for X. Now X = v G, wking £, = (X\Gy) we see that

b= !‘:'[X"-G’ i % hence the family 5 consisiing of closed sets E = (X\Gy) as
e ) i

J € A is such that ¢ =ﬁ{FJ:F'j' € ._-5?}“:1 contradiction; however by assumpiion
I does have F.LP. Therefore, there is a finitc sub-tamily say Fy, Fs. .. By af
i1} b1 L
FF such that ﬂIFa =¢ ie. X=U(XIF )= UG, : that means < admiis of a finite
z i= i=1 i=| .
sub-cover for X, and (X, 1) is compact.
Theorem 2.2, (Tychonoft Theorem on Product) The Cartesian product
i any number of compact spaces is compact w.r.t product Topology.
Proof : Let (X, 1) be compact spaces and © Let X = X{X,,  ge Al We
show that with product topology X is compact. .

Put S8 = {p;: (s ug e, :ae.ﬁ.} Then the family S2% forms a sub-base
for the product topology for X, Pr, denoting the projection function : X — Xeg
as 0. € A now X will be compact if each sub-family-@ of $8 such that no finite
sub-collection of @ forms a covering of X, fails 1o form 2 covering of X.

For each 0.€ A, Let 8, denote the family of all thase open set ug,E T, for
which p;:{uajeap. Then no finite sub-family of ®, forms a covering for
X + and hence ashole family can not form a covering of X, since (Xq, To)
ts compact. So there is a point ( say) Xg€ Xy which is missing in any open set
Uy € By. Then the point xe X with oth co-ordinate X does not belong to any
member of p—meaning that ¢ does not form a cover for X.

Corollary : Each cube as the product of closed unit intervals is compact.
Definition 2.2. A subset H in (X, 1) is said to be nowhere dense in X
if Int (H)=9, bar denoting the closure.

For example every finite subset of reals with isual Topology is a nowhere
dense set of reals.
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Theorem 2.2(a). If an infinite number of Co-ordinate spaces are not
compact, then each compact set in their product with product Topology is
no-where dense.

Proof : Let (Xq To) be Topological spaces for each o, of an infinite index
set A be Xo= X{Xq : €A} with the product Topology. '
~ Take G be a comipact set in the product space X. Suppose u i$ an interior
point of G. Take N as a nbd. of u with N < G : Without loss of generality take

‘N ds a member of the defining base. Thus N is of a form :-

N= |“|{ p ,' [‘u’a'] el } where F is a finite subset of A, and V; is open
in X If Be (AVF), then prﬂ{{}} =Xp and Xp being continuous image of compact-
space shall be compact. Theretore all but a finite number of co-ordinate spaces

~ are compact. ¢ : '
Theorem 2.3. Continuous image of 4 compact space is compact.

Proof : Let (X, T) be a compact space and (Y, V) be a topological space,
and £: X — Y be a continuous function. We show that £(X) is compact in Y.
Take % = {Gal,, be an open cover for f(X). So

f(X)culG,:G, €%}

Therefore Xcf-! (u G 5 ]z 0 Bl B e it (1)
! aeh ash

By continuity of £ cach t71(C,) is open in X, and (1) shows that the family
{f-1(Ge)},_, is an open cover for (X, T) by cor-pactness of which it follows
that there are a finite number of members, say, WGy £ HGa), ... £1(Gy) such
that

X c NG UE GV I (G = f‘l(_ui; G.;)
n :

So given open cover G for f(X) bras a finite sub-cover for .
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Thus f{(X) is- compact.

Corollary (1) If f is continuous function of a compact space onto g

 topological space Y, then Y is compact.

(2) A homeamnrphm image of a compact space is compact.

{3) A real-valued continuous function on a compact S]]-:ILE is bounded
and attains its bounds.

Because, Let f: (X, 1) — Reals be continuous where (X. 1) is compact,

S0 i(X) is a compact set of reals with usual topology, and therefore f(X) is

bounded and closed.

Theorem 2.4. A 1-1 continuous function of a compact space onto a T
space is a homeomorphism, _

Proof : Let {: (X, 1) — (Y, V) be a continuous function that is 1-1, where
(X, 1) Is compact and (Y, V) is Ty. It suffices to show that [ is an open function
or equivalently, we show that if F is a closed set in X, the | image 1(F) 1s closed
in Y, We know that every closed set in compact space is compact.; So F is a

compast set in X, and f sends F to a compact set i.e. f(F) is a compact set in
Y-which is Ts. Hence £(F) is closed in Y.

Theorem 2.5. IfAisa compact set of a Ty-space (X, 1) and x e (xm], ]
there are open sets V and W such thatx € Vand Ac W and (U W) = e

Proof : Let A be a compact set in X which is Ty, and take x e(X\A).
If y € A, then x # y, and by Ty-separation there are opon sets V, and Wy
such that x € Vy, y € Wy and Vy MW, = ¢; and, therefore, x & W New
the family {W, yeAl bemmex an open cover for A which is compact.
S0 there are a finite number of members (say) W ¥y \,2, W}, such thal

ACW, UW, U . LU W, L Put W= Uwy. ThenWmanupeantauLh

i=l

thalAcWandxﬁWﬂ(i;i,Z, .on)and hence x g W W. Take V = X \ W .
Then V and W are open sets to satisfy x € V, A « W and V W) = ¢.

Corollary each cdmpact set in a Ty-space is closed.
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Theorem 2.6 Let A and B be two compact sets in a Ty-space X such
that A M B = ¢. Then there are two open set V and W such that A < V and
Bc W with VW =20

(Comequemly, a compdut T,-space is Normal).

Proof : Foreach x € A, we have B is a compact in X withx ¢ B Le. (X&B]
Theorem 2.5 says therc are open sets V,.and W, satisfying x € Vy and
B c W, with Vx M Wy = ¢. Also BNV, =6, Now family [Vy:xe A} of
open sels is an open cover for A which is compact. So there are a finite
number of members Vi, Vi, o Va of this family to cover A, PN =
Wi Vg W A Vi TthACV'md BNV, =¢ (i= 1,2, ... n) gives
Br V=, Let us take W = {XW) Then V 'md W are open sets in X such
that A © V and B € W with V. AW = §.

(Conserﬁ;uentiul statement 1s-clear).

§3. Locally .Cﬂmpact Spaces :

. Definition 3.1. A topological space (X, 7) is said to be locally compact
if each point in X has a compact neighbourhood (nbd).

Explanatlnn - If (3, 1) is compact, then of course it is locally compact
one may take X itself as a compact. nbd. of each of its pmm:. If 7 is discrete
and X is infinite then (X, 7} is Locally compact without ’c:nf.um;r compact
becuu«.c for each xe X, the singleton {x} is a compact nbd. of x. However,

family of all singletons is an open cover for X that has no finite sub-cover
for X.

Example 3.1. The real number space R with usual topology is not compact.
it is Locally Compact,

Solution : R being ot bounded, it is not compact. However if x& R, then
a claaed interval like [x — 0, x+08),0>01isa nbd. of x which is a closed and

bounded set of reals and hence it is compact.
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Theorem 3.1. Let (3, T} be Locally compact Ta-space then the family of
all closed compact nbds of 2 poim. in X is a nbd. base there.
~Proof : Let (X, 1) be Locally compact adn a T-space. Take x e X Let
C be a compact nbd. of X suppose U is any nbd. if x.

Put W = Im (U )

Then W is a compact Ty-sub-space of X S0 W contains a E:IE‘J.‘\'Et.;i compact
set V which is a nbd. of x in W: bat V I8 also a nbd. of X in W (relative to
- topology in .‘ﬁvf“}..and is therefore a nbd. of x in X.

Theorem 3.2, Every closed sub-space of 4 Locally compact space is
locally compact, ; :

Proof : Let E be a closed set of (X, 1) which is Locally compact, We show
that (E, 1g) (where T 15 the ramti.v'ised topology of T on E) is Locally compact.
Take x € E. Since X is Locally compuact. we find a compact nbd,, suy. G of
xin X, Put M =G N E, So M is a-nbd, of x in E. Ag M i a closed set in
compact space G, we see that M s a compact subset of G ie. M is a compagt
abd, of x in (E; 1), Hence (E, 15) is Locally compact
§4. One point compactification : _

Let (X, t) be a Locally compact Ts-space,«and !;l is an element outside X
(weX) Put X, = X U {u). Define 1 Topology T, on X, as —

(i) All open sets in X as subsets of X, are in L

(i) All complements in Xy of compact sets in X are mn T, and

(iii) X, € 1,

We now check that above presctibed family is indeed a Tcupélngj: in X,
From (i) t < 7. and by (iii) X, € 1,

FOR UNION : It is O.K. in respect of members of T (i),

-Consider a family - {(X \A) : Ay 18 a compact set in X which is Ta}gea ;
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Hence Ay i8 clof-.ed in X, and hence () A, is compact in X, and we
el

have U(Xufﬁu) [ /ﬁ A“J and by {m we have the union is a member

mEd

of 1, Also if G € T and (X\H) € 1:u as in (i) where H is a compact set
in X, then
GuX, IH}—X Kt(XHG}ﬁH}

Since (X\G) is closed in X, and H is compact in X. Then,ture [ Kiﬂ‘ﬁ mH
is compact in X, and from (ii) rh.s. set is a member of T,.

FOR INTERSECTION : It is OK. in respect of (i). Take two members
{X,\Dj and (X,\C) where C and L) are compact sels in X as members from (i1},
Then we have (X, \D) M (XN = (X MC w2 D)) Where C D is also umupuci
in X. Hence r.h.s member € Ty a8 in (ii). Also if, A € 1, as in (1) and (X \B),
B is compact in X as in (ii), then B is also closed in X bCLJLIﬁﬂ X il
Therefore (X, \B)\(u) is open in X.

Now A M (X VB
= A N {XNABMu)}, and hence is a member ot T as in (i)

Our verification is complete, and (X, Ty) | is a Topological space. It remains
to show that T is actually equal to relativised Topology of T, on X.

It Ger then G e 1, and G = G M X, Thus
; : ' ’c < relanivised Tﬂlﬁolng}; T, on X e
Let H be an open in relatised Topology T, in X. 80 we write H = XA
for some member A € Ty.
In case A is of type as in (i) we haw. H as a member of T.

In case A is of type as in (i), pst H=X 0 (X, \B) for some mmp«lci L
B in X. Because X is Ta, we find B as a closed set m X. S0 (X\B) is a member
- of 1. Therefore from above '

H = X A XAB) = X A (X\B), and so, H € 7. Therefore
) relativised topdlﬂgy T, inXCT1T. sy~ I (2)
Combining (1) and (2) proof is complete. '
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Theorem 4.1. (X,, 1) is a compact Ty-space.

Proof : Take.x, y € Xy with x # y. If X, y are members of X, we have
finished. So let us suppose one of them equals u, say u =y, Now (X, 1) is Locally
compact, 50, there is a compact nbd. N, of x in X. As X is Ty we take N, to
be closed. Then : : :

Int (Ny) ™ (X,\Ny) = ¢, where Int (Ny) and X,\N, are open sets in X
containing x and u respectively, So (Xus Ty) is T,

To show that (X,, 1,) is compact, suppose {Gg}oea be an open cover of
Xy Letue G, for some 0 € A, and therefore G, i8 such that G, = (X,\D)

where D is a compact set in X,

ie. (X,\Gg,) = D - e %y
Now (Xy\Gy) € X = U Gy , giving

=4,

(Xu\Gy) © [ J(XnGy);

neh

This shows that the family (X N G,): ae A} is an open cover for (XUIGH;]}.
(*) says that (XUHG%) is a compact set in X, and hence there is a finite sub-
cover of this open cover for {X;;&Gaﬂ} say (X M Gg ) (XN G.Iz], . Gy, ).

Thus (XUIG%) ZX Gq!) (X My Ggﬂ} IR D s Gu“)
s 1.e. (XuHG%) e G-::, L G% TS Gaﬁ

S0 X, = Gg, W (Xu‘ut}%)

| cﬁ%uﬁqiua%u;..uga‘t, |
That means Given open cover admits of & finite sub-cover for Xy, and (X,

Ty) 18 compact,

Remark : Compact Ty-space (X, 1,) arising out of a given Locally
compact Tg-sphce (X, 1) in the manner described above is called “One point
compactification” of X, and external point u is designated as the point at
© infinity. : :
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Exercise - A
Short answer type questions
Show that a finite Topological space (X, T) is compact.
Show that no open interval of reals with usual topology is compact.
Whmh one of followings aubsers of reals with usual topology is compact?
(a) [1, 2] U [3, 4]
(b) The set N of all natural numbers. Give m.asmw

In a Topological space (X, T) any set E consisting of points of a convergent
sequence together. with its conver ging limit is compact, Prove il

Show that union of a finite number of compact sets is o compact set in a
Topological space. Is the union of an infinite number of compact sets a compact
set? Give reasons,

In a compact Ty-space families of closed sets and compact seis afe identical, vac
it by quoting relevani Theorems.

Show that an infinite discrete space is Locally compact without bramg

com pact

Exercise - B

Show that every regular Lindelstf space is normal.
Show that a compact To-space is Ty '

Show that a sub-space of a compact space need not be compact, and verity that

- every closed sub-space of a compact space is compact,

Show that every real-valued continuous function on a compact space X there are

- points x and y in X such that f(x) = supf and f(y) = Inf f.
X X

Show that intersection of two compact sets in a Topological space X may not be
compact. If A is a closed set and B is a compact set in X, show that A B is
compact,

Show that a continuous image of a locally compact space need not be Locally
compact.
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Unit 5 3 Connectedness

(Connected spaces, Separated sels, Disconnection of a space. Union of
connected sets, Closare of a connected set, Connected sels ol reals,
Continuous image of a connected space, Topological product of connected
spaces, Components, Their properties, Totally disconnected spaces, Locally
connected spacesh :

§1. A Connecied Topological space (X, 1), roughly speaking. is such a
strong piece of objects that it dees nof allow its partifion into two
non-empty disjoint open (or closed) subsets. To be more precise we
present the following definitions.

Let (X, 1) denowe a Topological space.

Definition 1.1. Two subsets A and B of X are said to be separated il
AnB=¢ and AnB=¢.

Explanation : Without 10ss of gencrality, assume A = ¢, B = ¢. Subsets
A and B when separated are. ol course disjoint. But there are mote things to
look at. Neitlier A nor B conting a limit point of other. In retaiive topolog

for AUB, both A and B are regarded as closed in {AwB); or equivalently, .

A or B is taken as (each) open and hence cach has status of a clo-open set

in (AwB). Take for example. open intervals (0, 1) and (1, 2) of reals with g

usual topology. They are disjoint subsets. But they are not separated as per
Definition 1.1 above because number | belongs to closure of each.

Theorem 1.1. If A and B are subsets if (X, 1), and'both A and B are closed
{or both are open), then (A\B) and (BVA) are separated.
" Proof : Let A and B be closed subsets in X Then relative 10 (AUB). A
and B are closed, and therefore (AVE) = ((AUB)\B)) and (BYA) are open in

(AVBYW(BAA) and since thé}; are complements relative 10 ((AAB)O(BYA))L

both become closéd in ((AAB)W (BVA)). Hence (AVB) and (BAA) are
separated. ' ;

In case A and B are both open, proof is done by a similar dual argu-
ments. |
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Definition 1.2(a). (X, 1) is sais (o be connected if X is not a union of
two non-empty disjoint open sets in X.

or equivalently, iff X is not a union of two non-empty disjoint closed seis
in X NG 7

(b) A subject Y ' of X iy said to be connected if 'Y as a sub-space of
- (X, T) with relatvised topology becomes connected.

or equivalently, Y is not a union of two non-empty disjoint open subsets
(closed subsets) of Y in relativised topology on Y, :

{2) (X, 1) is said 1o be disconnected if it is not connecred e, i X admirs
of & decomposition ke | : ' '
' : X =GuUH,

Where G and H wre a pair of non-empty disjoint open (or closed) subsets
of X. Such a decomposition of X is called a discs:mne_-.:led of X.

Explanation : Definitions say that (X, 1) is connected if and only if only
clo-open sets are ¢ and X. A subset Y of (X, 1) is disconnected if Y has a partition
like Y = Pu Q where P # ¢, Q # ¢, and P and Q are disjoint open subsets of
Y.SoweputP=GAY and Q = H~ Y where G and H are open sets in X,
Therefore, ¥ = (GAY)u (HM YY) where rhs. membery are nonncmpiy and
disjoint. : '

{_Z‘-:-ﬁversaly ifY = (GnY)u(HA Y whezf G and H are open sets in
(X, 1) whose intersections with Y are non-empty and disjoint, then Y is not
connecled. : |

Example 1.1. The subset Q of all rationals in real number space with usual
topology is disconnected,
solution ¢ If x, yeQ with x < ¥, take an irrational number o such that
X<aey. ' '

Then we write Q = {{~s, )" Q} U {(0, %) Q)

Where rh.s. members are each open sets relative 1o sub-space Q such that
each is non-empty because x g (=e, )N Q and ye (o, )nQ and they are
disjoint, Hence Q is disconnected. '
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Remark 1. : Above decomposition of Q is a disconnection for Q. By a
different choice of o one gets another disconnection for Q. As the choices are
many, there are many disconnections for Q, '

Remark 2. : By a similar reasoning one sees that the set E of all irrationals
in the real number spece R with usual topology is also disconnected, and there

are many disconnections for E.

Remark 3. : We shall presently see that the real number space R with usual
topology is a connected space. Thus we at once conclude that Union of two
disconnected sets may be a connected set.

Theorem 1.2. If A and B are two ﬁon-empty separated sets in (X, T),
then Aw B is disconnecied.
Proof : Let A and B be a pair of separated sets (non-empty) in (X, 1),
Then we have AnB=0¢=AnB. PutG={X‘t_ﬁ} and H=(X\A).. .
" Then G and H are disjoint open sets of X such that
AUB=((AUB)NG)U((AUB)nH), which is a disconnection for
(AU B). '

Theorem 1.3. A Subset ¥ of (X, 1) is disconnected if and only il Y is a
union of two non-empty separated sets.

Proof : The condition is sufficient : This part follows from Theorem 1.2.

The condition is necessary : Let Y be a dis connected subset of (x, 7). So
Y admits of a partition like

Y =(YAG)U(Y nH) - (*)

Where G and H are open sets in X such that their intersections with

Y are non-empty and disjoint. We check that members in rh.s. of (*) are

separated sets. It suffices only to verify that neither (Y m G) nor (Y H)

contains a limit point of the others. We use method of contradiction and let
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u be a limit point of (YN G) and ue(Y n H). Smcc H 1 an 0pcn set
containing u, so

Ho((YG)\{u)) =6 © k)
Bul(YnGinH=(YNG)N(Y nH)=¢. by hypothesis " R 100
New (1) and (2) are contradictory, and Theorem is proved.

Example 1.2. The Union (0, 1) (3, 4) is not a connected set of reals with
usual topology. .
Solution : Take a real number « such that | < ¢ < 3..
It E = (0, 1)U (3, 4), we may write
E =((=e=, )M E)U((g, ) " E)
Where r.h.s. members are each non-empty open sets in E (with relativised
topology) and they are disjoint. Hence E is disconnected.

Remark : We shall soon see that every interval of reals is a connected
set of reals with usual topology; and Example 1.2 says that Union of two

connected sets may not be connected. However, we have the following
Theorem.

Theorem 1.4. In (X, 7) if {Ay} ., be a family of connected sets such

aed
that ﬂr’ta #0, then their Unjion = L’izﬂmﬁt is connected.
o EA TLE A
Proof : Let us assume the contrary and let A = U"""ﬂ! be disconnected. We

MEA
seek a contradiction. Suppose A has a disconnection :

A —'(AnG}u{ﬂ'ﬁ H),
- Where G and H are two open sets in X such that each of (A " G) and (A ~ H)

is non-empty and {AHGJU (AnH) = ¢. Since A= | JAe, we have

oEA
Ag c(GUH) e s

Now A, lies entirely either in G or in H: . . . (*) omerwise, (A NG =0,
(AgnH)# ¢ and Ay =(Ag NG)U(AL nH) gives rise to a disconnection of
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Ag Thus statement in (*) is valid for each member A,. Further, if

" A cGand Ag < H with o # B, we see that ue [JAa c(AaNAp)<(GNH).

Ofcourse, uE A. Hence ue An(GrH) = (A ?{ﬁ} M (ANH)— which is a
contradiction. Therefore, members Ag enblock lic either in G or in H and hence

| JAq = A lies either in G or in H—again a contradiction a desired. We have
agd : ' ;

completed the proof.
Example 1.1. Let X = {a, b, ¢; d} and 1 = {9, X, {a], {a, b, c}. {a, b}l
Show that topological space (X, T) is connected. '

Solution : Here, the family of closed sets is {X. ¢, {d}. {c, d}, {b, c. d}}
and we check that only clo-open sets arc-¢ and X. Therefore (X, 1) is
connected. : :

Example 1.2. Let (X, 7) be a topological space where X = {a, b, ¢} and
t = {6, X, {a]. {b, c}}. Examine if (X, ©) is connecicd.

Solution : Here X = {a} W {b, ¢} which is a disconnection for X, and hence
(X, T) is disconnected. ' ;

Theorem 1.5. In a topological space (X, 1) let A be a connected set in
X and B be a subset in X satisfying AcBc A, then B is connected.

Proof : Assume the contrary. Let B have a disconnection like

B=EBnGuUBMNH) : s ety

Where G and H are open sets in X such that (B n G) and (B mn H} are non-

empty and : ;
BnG)n(BrH)=¢ : -k
Now Ac B: from (1) we see that Ac (Gw H).

Now AnG#d and AnH=¢ give a disconnection of A as
A=(ArG) U (AN H) —making A disconnected. Hence A lies entirely either
in G or in H. Suppose, A H = ¢. Because H is open, we have A~ H = ¢. That
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means B H = ¢ which is again a conuadiciion. We thus have reached the
desired contradiction and the proof is complete.

Corollary 1.1. : Closure of a connected set is connected in a Topological
space.

Theorem 1.6. A Topological space (X, 1) is connected il and only il
given any two distinct points in X therve is a connected sub-space ol X

containing both.

Proof : The condition is necessary : Let (X, 7) be connected. Given any

two distinet points in X, the space X itself takes core ol them as desired.

_ The condition is sufficient : Suppose the condition helds but X is
disconnected. We derive a contradiction.

Let X = Cuw D be a disconnections of X, where C and D are a pair of ron-
empty disjoint open sets in X, Take c € C and d € D; s0 ¢ #d in X, By hypothesis
there is a connected subspace G of X containing ¢ and d, Cieurl.}r GoX =
CuwD : Because G is connected, etther G C or G D Let G C; then
¢.d e GcC and so de(CnD) = ¢. This is absurd. Hence we have proved
theorem, '

§2. Consider the real number space R with usual topoiogy. Here intervals are
of vario_us;_'typcs'likc (a;b)={xeR:a<x=b}. [a.b)={xeR :asx<hbl
Similarly (a, b], (—e=. a) = {xeR : x < a}: (a. =) = [x e R; x > a}, and similarly
(=e=, a], [a, =) and (=es, =) = {x : xeR} = R. An interval I of R may be
characterised by the property :—

| a, bel means the closed interval [a, b] < 1.
Theorem 2.1. A subset of R with usual topology is connected if and only
if it is an interval. |
Proof : The condition is necessary : Suppose E is a connected subset if
R without being an interval. Then we find a pair of distinct members a, be B
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such that [a, b] @ E. Thus there is a member u such thata <u < b and ugE..
Then write, E= ({(—s=,u)nE)u({u,=)nE) and that is a disconnection for E
—a contradiction. Hence necessary part is proved.

The condition is sufficient : Let I be an interval of reals. If possible, let
1 have a disconnection
I=AUB,
where A and B are a pair of non-empty disjoint closed sets in I.

Take x & A and z& B; since ANB = ¢ we have x # z, and without loss of |
generality, assume X < z. Because I is an interval we have the closed interval
[x, z] = 1. Thus
' [, 2]  (AUB)

Put y = sup([x, z] m A). Then x<y<z; so yel. Since A is closed in I, we
have

yEA i (.l)

Therefore, y # z and we have y < z.

By property of supremum, for large natural numbers n, all numbers y+%
belong to B; and since B is closed, passing on limit ags n—ee, we have

I.i_l;” (F"'Flt‘}: y€B; this contradicts (1) because A B = ¢. The proof is now
1Y = B

complete.

Corollary : 1. The real number space R wiiiz usual topology is connected.

2. The only non-empty clo-open set in R is R itself,

§3. Theorem 3.1. Continuous image of a connected space is connected.

Proof : Let (%, T) be a connected space and f (X, 1) = (Y. ) be a continuous
function where (Y, W) is topological space. We show that f(x) is connected in
Y. If possible; let f{X) be disconnected and let

f(X) = (G ) U HA X))
| 80




‘Where G and H are open sets in Y such that G~ f(X) and H £(X) are
a pair of non-empty disjoint open sets in f(X).

But continuity of { we know that { ~Y(G) and £~'(H) are open sets in X, and
from (1) we find '

- X=(Gut T (H),
Where members on rhs. are non-empty and disjoint. That means X is

disconnected —a contradiction that X is. connected. The proof is now
~ camplete.

Corollary : 3.1. Let (X, ©) and (Y, /) be two Hﬂm&omm phic ‘apaLex If
X is connected, then Y is connected,

3.2. Any real valued continuous function over a closed interval [a, b] of reals
possesses Intermediate-value property. '

Because, [a, b] = image of [a, b] under f is connected, and hence it is an
interval of reals, by theorem 2, f(a), f(b) € f[a, b]; and if f(a) < f(b), we have
the closed inverval [f(a), f(b)] < f[a, b]. .

Now 1f f(a]i < p < f(b), there is a member ¢ between’ a and b such that p

= f{e).

Remark : In Corollary 3.2 domain of the continuous function is taken to
be a closed interval. Statement is valid in respect of any interval.

1 et us consider a topological space consisting of two mambers 0 and 1 with
discrete topology. This discrete two pointic space {0, 1} is disconnected,
because {0, 1} = {0} w {1} is a disconnection. One can characterise a
disconnected space with the help of this discrete space {0, 1}. y

Theorem 3.2. A space (X. 1) is disconnected if and only 1f lhcre is a
mnunucuza function f ; (X, 1:} — {0, 1}, which is onto,

Prunf The condition is necessary : Let (X, T) be disconnected. X admits
of a.decomposition like X = G H, where G and H are non-empty disjoint open
sets in X,
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Definef : X —>'{{_3, 1} by the rule :—
f(x) =0if xeG
- and =1if xeH.
Clearly f is an onto function. To check continuity of £ we see that &,

(0,1}, {0} and {1} are the unfy open-sets in the discrete space {0. 1] and thar
£71(0) is always an open set in X, 0 being any open set in {0, 1}.

- The condition is sufficient : Suppose the condition holds. Thern X must
be disconnected; because continuous image of a connected space is connected
and here the discrete space {0, 1) is disconnected.

Theorem 3.3, Topological product of two connected spaces is connected
and conversely.

Proof : Let (X, 1) and (Y, v) be two topological spaces, and let Z =

- X xY denote the topological product of X and Y with product topology. Suppose

Z is connected. Then consider the projection functions Pr, L — X and
P, * Z — Y that are each continuous; and Pr, (Z) = X and pr (Z) =Y. Since
continuous images of connected spaces ae Lunnected it foiluwa that each of X

- and Y is connected.

Conversely, assume that X and Y are connected spaces. Take a fixed

memeber yoeY, and put Xj, = Xy{vo}. Then X and XF are hommmorphtc

Since X is connected it fﬂllaws that X is c_onnected If xeX, put Y,
{x} x Y. By a similar reasoning Y, is connected, because Y is connected. As
(X1¥0) € X},ﬂ MY, it follows that X?"u WYy Is connected by Theorem 1.4. Finally,

we write X xY = x{:E_J}‘&g}‘: yo WY¥x) and observe that X},ﬂc (Xv"n W Yy) for every

member X £ X, and bécause every individual member of ths. is connected we
finally see that X x Y is connected.

Remark : Theorem 3.3 remains valid for an arbifrary number of connected
spaces.
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Definition 3.1. A connected set C of (X, 7) is said to be a component in
X if it is a maximal connected sub set; that is, C is not properly contained
in any other connected set of X.

~ For example, in a cnnnected space (X, 1), X is itself a component.

Example 3.1. Let (X, t) be a topological space where}{ la, b, ¢, d, e}
and T = {0, X, {a], {¢, d}, {a ¢, d}, {b, ¢, d, e} }. Find all the components

v | i, T

Solution : Here X is not conn-:cr:éd; because X = {a}u {b,c, d, e} isa
disconnection of X. However, there are connected sets in X. For example {a}
is a connected set; and we find {a} and {b, c, d, e} are the only components
in X. i | '

Theorem 3.4. Let (X, 1) be a Topological space. Then—

~ (a) Bach point of X is contained in’a component of X.
(b) The components of X determine a partition for X.
(¢) Each connected set in X is contained in a component of X.

(d) A connected set in X that is both open and closed is a component
of X.

(e} Each component of X i closed.

Proof : (a) Let xeX. Put G, = (G G is a connected set in X
containing x}. Because x & C; for every i, it follows that C, is a connected set.
We now show that C, is maximal. Let C; ¢ D where D is a connected set
containing x in X. By construction of Cy we have D c C,; and therefore,
C, = D. Hence Cy is a component in X containing X. : I
(b) For each x & X, construct C, as in (a). Put { = {C,: xeX}. We now

verify that { becomes a partition of X. By construction, X = | Jox. Now
: ' xeX

suppose Cy N Cy # . Take pe Cy N C,, then we have C, c Cp and Cy < Gy,
Now C and C, are each connected sct containing p, by mammahty af Cp we
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have C, = Co= Cy. Therefore any two members of { are either ' disjoint or
coincident. Hence (b) follows.

(c) Let A be connected set in X and take x € A; by construction of C, we
find A ¢ C,.

(d) Let E be a connected set in X and let E be both open and Cl{:‘!ﬂed, MNow
by (c) there is a component C of X such that E < C. Suppose E is a proper
subset of C. Then we write C = (C 1 B) U £ W Dl dCIlG[lHE coplement
of E. Because E is assumed to be clo- -open, this decomposition is a dnmnnccuun
of C— a contradiction, for a component C is connected. ‘Hence result is
E = C = a component,

(¢) Let C be a component of X without being closed and C is strictly
larger than C; Now C < C shows that C is connected because C is so—
by corollary 1.1 that contradicts maximality of C whmh 1s a component. Hence
- C is closed.

Example 3.2. Give an exﬂmple of a Topological space where components
are not open.

Solution : Consider the sub-space Q of all rationals in real number space

R with relativised topology in respect of usual topology on R. Here each
component in Q is a singleton and this is not an open set in Q.

84. Definition 4.1, : A topological space (X, T) is said to be totally
disconnected if for each pair of distinct points x and y in X X has a
disconnection X = GUH with xe G and y ¢ H.

- Explanation : A totally disconnected space (X, 1) is a T5-space; because
each pair of distinct points of X attracts a disjoint pair of open sets containing
them individually. Ofcourse, a totally disconnected space is disconnected.

Exam{!ﬂe 4.1. The real number space R with upper limit Topology is totally

d]bCUnHCCT.Cd
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Solution : We know that upper limit Topology for R is generated by left-
-open intervals like (a. b], a, beR witha <b. Let x, yeR with x # y, x <y
then we write e

R = (—o0, X] U (X, ),

where sets in r.h.s. are a pair of disjoint open sels in upper limit Topology
containing x and y tespectively. So R is totally disconnected.

Remark @ With respect to usual topology R is a connected space.

Theorem 4.1. The components of a totally disconnected space are its
singletons. ; :

" Proof : Let X be a totally disconnected space and let C be a component
in X. We show that C does not have mor¢ than one point. Let x, y e C with
x#y;as X is tumliy disconnected, X has a disconnection like X =G U H where I
G, H are non-empty opf:ﬁ disjoint sets with xe G -and y g H.

We writeC= C n X _ _
=CAGUH) =CAGUIECNH,
showin.g that C is disconnected which is not the case. Hence theorem is
proved. : :
Theorem 4.2. The product of totally disconnected spaces as totally
disconnected in product topology.

Proof : Let {(X;.7)};,, be a family of totally disconnected spaces and
et X = X{X; ie A} be the product space with product topology. Take two
distinct points X = '(x;), and y = (y;) in X, Therefore, for énme index i =iped,
we have xj, # ¥, in co-ordinate space X, which is assumed to be totally
disconnected. There we find two disjoint open sets (say) G;, and H;, in X, such
that x;, & Gy and y;, € Hj, and Xj, = Gij; v Hj, Take G = X{G; : where
G; = X for all i except ip in A} and H = X{H; : where H; = X; for all i except
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ipinA}. Then we see thatx £ G, ye Hwith G H = . and G and H are rendered .
open sets of X in product topology such that

X=GuH

.~ That means X is tﬂtﬂ]l};’ disconnected,

§5. Locally'-co_hnected spaces :

Definition 5.1. (a) A topological space (X, ©) is said to be locally connected
at xeX, if every nbd. of x contains a open connected nbd. of x.

or equivalently, if open mmlected nbds of x form a base fur the nhd
system at X

- (b) (X,_ 1) 18 said to be locally connected if it is locally connected at each
point of X, : '

Explanation : Unlike the relalmmhxp of compactness and local compactness
of a space, local connectedness neither implies connectedness nor is lmphed
by connectedness of the §pace. we have fﬂﬂnwmg examples in support of our
CGHIEHHGH

Example 5.1. If X = (0, 1) U (2, 3) is taken as a topological space -

with usual topology of reals, then X is locally connected without being
connected.

Solution : Taking a real number o with 1 < o < 2, we write

= (=0, o) M X) U (0, o0) M X), and this 15 a dlscmmectmn for X. 8o X
is not connected,

On the other hand if ue X, say, 0 < u < 1, and given any nbd. Ny of u
in X, we can find on open inteﬁai like (W — &, u+ §), & > 0 such that
(u=3,u+8) c Ny as an open interval of reals is connected, if follows that
N, contains an open connected nbd. of u, and X is locally connected at u,
Ifl<u< 2, then also similar conclusion holds.
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Example 5.2. Take X = A U B as a sub-space of the Eudidean'iuspacc

with usual topology where
b o)
— . i { o —
A {(x,}r} D<oy <l and y = $in K}~

and B={(0,y):—-15y=sl}

Then X is connected without being ]ocnliy connected.

Solution : Com1dcr a functiont: (0, 1] — R* where f(x) = (x sin — : ] D<x€l

Then f is continuous, and hence the image A = f(0, 1] is connecled, because
the interval (0, 1] is connected. Now we check that X = A and therefore X is
connected because A is so. :

However, X is not locally connected at (0, 1) e X. Because open circular
disc centred at (0, 1) with radius, Say, =% does not contain any connected open
sei containing the point (0, 1).

Theorem 5.1. (X, 7) is locally ¢ L@nnected if and -;mly if compmmnh of each
open subspace of X are openin X.

Proof : The condition is necessary : Lel (X 1) be locally connected, and
let Y be an open sub- -space of X. Suppose C is a component of Y. Take x & C.
Since X is locally connected at X, there is an open cunnected set U in X such
that-xeUc Y. Now xeC n' U where U and C are connected; therefore
C U U is connected and € w U < Y. Since C is a component, by maximality
of C, we have (C' witly=1C or U < C. That is x g U < C; as & is an arbitrary
member of C, we conclude that C is open.

The condition is sufficient : Suppose the condition holds. Let x € X,
and let N, be an open nbd. of x in X, Take C as a component such that
xeC < N,. By assumed condition C is open; this shows that there is an open
connected nbd, C of x such that C < N, Thus X is locally connected at X;
otherwords, X is locally connected.
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Example 5.3. Continuous image of a locally connected space may not
be locally connected.

S{i]utinn : Take X = {0, 1. o TR discrete topologies and

Y= {ﬂ; Jed, ];} as a sub-space of reals with usual topology. Lonmiu A
function ' : '

¢ : X — Y where ¢(0) = 0, and q}{njr: i— ISR S P

The function ¢ is an 1-1 and onto continuols function, such that X is locally
connected; but Y = f(x) is not locally connected, because induced topology on
Y is not discrete, but singletons in Y are connected, ' '

EXERCISE - A

" Short answer type Questions
I. Show that a topological space (X, ©) with indiscrete topology T is connected.

2. 1 X has more than iwo members, show that (X, ) with discrete topology T is
~ disconnected.

3. Give. an example to show that connectedncas is not a hereditary property.
4. Examine if the real number space R with Iower limit topnlngy is connected.

5. Show that the sct of all irrational numbers with topology of reals is a disconnecied
set.

6. Give an example of a topological spece with a non-discrete topology whére each :
' smgieton is a component. :

{Hint : Take the sub-space Q.of all rationals with usual topology of reals).

EXERCISE - B

1. If a Hausdorff space (X, t) has an open base whose members are closed, show
that X is totally disconnected.
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b2

Give an example to show that product space of an arbitrary number of locally

connected spaces may not be locally connected,

Show that image of a locally connected space X under a continuous function which

15 an open function 15 focally cornecied.

Show that a compact loc:ﬂly connected space has a finite number of mmpo;
nents. o

Show that components of a totally djﬁsconnmmd space X are singletons of X.

Given a topological space (X, 1), a binary relation p in X is defined by xp y (x,
y € X) holds if and only if x and y belong to a connected set in X, Shpw that p

is an equivalence relation on X and verify that p-equivalent classes are all the
components of X,
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Unit 6 U Unit‘ﬂrm Spaces

(Symmietric sets and composition of sets in XxX; uniformity 22in X, base,

sub-base for 94 uniform space (X, @£), uniform topology T4 for X,

T,-property of Tg; Interior and closure of A in terms of member of %
uniformiy continuous function, Product Uniformity, Uniform continuty of

a metric in (X, 49).

§1, Let X be a non-empty set, So XxX # 0. If A < (Xx00), then A™' is defined
as Al = {(y, x) : (x, y) € A}. So that {H“I}_t = A. If A and B are two subsets
of XxX, then their composition A B = {(x, 2} £ (XxX) : (X, y) B and (y, z) e A
for some yeX}. ;

Now A B may not be the same as B,A; however, composition is associative
e AJUBC = (AB),C and also (AB)! = B! A7, The set of all pairs
(x, x) as xeX is called the Diagonal, often denoted by 4, of XxX. Also il
U o (XxX) and K < X, the set U[K] = {yeX : (%, y)e U for some xeK}.

In particular, if K is a singleton, say = {x} in X, we have

Ul = {yeX : (x, y)eU}
 With these preliminaries we are ready to proceed further.

~ Definition 1.1. A subset U of XxX is said to be symmetic if U = U™\,

Explanatmn Let X = The set R of all reals, and U = {(x, yv)eRxR :
_|!{ y|<1): then U = U™, hence U is symmetric because if a pair (x, y)
satisfies [x—y| <1, then |y-x|=|-(x-y)l=|[x~-y|<l; So (x, y)e U it and only
if (x, y)e U™\, However, if '

H={(x.y)eRxR:y—x <1}
={(x,y)eR?- Ly <X+ 1}

Then H is no symmetric; for (0, 2)eH, but (-2, 'D}EH although
(=2, HeH . 1 Geometrically, H denotes the lower halilspm,e of R bounded
above by the line y = x + 1; and :
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H™L={(x,y)eR? (Y, %)EH]
:{[X,}’}ERZ :Kt:'jr‘-t'l} :
{{x,y]ng ty>Xx-— I}
upper haif -space bounded below by the line y = x 1.

I

H

And further

Hrl"! = {{x,}f}e R2 :x—] <y< xH}
= {{x,yjeR3 x=yl< i}=
=5 Dpen strip in R* bounded -h_\,f the linesy=x-landy =x +1.
Theorem 1.1, If U and V are two subsets of XxX such that U is symmetric:
then VolUsV =U{V[x]x V[y]}:(x,y)eU.

Proof : Here, VoUoV = the set of all pairs (u, v} such that (u, x)e V,
(%, ¥) eU and (y, v)e V for some x and some y. Since V is symmetric; this
is the collection of all (u, v} such thatu € V[x] and v & V[y] for some (x. y) e U.
Butue V{x] and ve V([y] if and only if (u, v) & V[x] x V[y], and hence Vo UeV
= {(u, v} {u, v)e V[x] ><.' Vly] for some (x,y)e U}
=U{VIx]x V[y]:(x,y)e U}
Definition 1 2. A Umtormlt;-,r @ on X is a non- -empty family of subsets
of XxX samf}'mg the following mnd:tmnb known as axioms of Uniformity ;
(u.1) Each member of % contains the dmgom[ A
(uZ} If ue % then vle 92
(w3) Ir uE % there is a member V g % such that VoV < U:
(u. 4} If u and v are two members of %, then (UnV)e 2 and
(u.5) If ue % and UV XxX, th-:n VE W,
If 9 is a Uniformity on’ X then the palr (X, @) is called a Uniform

| space.
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Definition 1.3. (a) A sub-family &2 of a Uniformity % on X is called a
base for % if and only if each member of % contains a member of .

{b) A sub-family 5% of %/is said to be a sub-base for % if and only if the
family of all finite intersections of members of S#% forms a base for %4

Exa'mple 1.1. Every melric space is a Uniform space.

Solution : Let (X, d) be a metric space. For each +ve r let

Vi = {(x, y) & (XxX) : d(x, y) <1}, .

Thisn Wi nioke that vz I L = ViV M Vg, = Va,u where u = minfr, ]; and
vdrbvﬂjrcvd?r ; .

Now it is a routine exercise o verify that the family of all sets of form Vg,
forms a base for a umfnrmuy for X; and X becomes a Uniform space.

Analogous to base and sub-base for a Topnlngy in X, we have the following
Theorem that is easy to prove and the proof is left out as such.

Theorem 1.2. A family 2 of subsets of XxX is a base for a Uniformity
for X if and only if
{a) Each member of 4 contains A;
(b) If Be &, then B contains a member of 5, ;
(c) If Be @, there is a member C in 2% such that CoC = B; and
{dy If By, Boe &, then there is a member Bsg # such that
B3 (BN By). '

Proof : Let (X, %) be a Uniform space.

Define 1 = [Gc X : for each xeG, there is a member Ue %£ such that
Ulx] < G}. We now verify that T is, indeed, a Topology in X. Definition says
that union of members of T is a member of 1. Let G, H be two membets of
7: and let x £ (G n H). So, there are members U and V in %4 such that Ux] G-
and V[x] c H. Therefore, (U V)x] < (G H); since (Un V) is a member
of @ it follows that G H is a member of T, and (X, T) is a Topological space.
~ This topology T is rather abbreviated as Ty since it is being induced by the
uniformity @ and very often named as a Uniform Topology on X. '
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Theorem 1.3. Let (X, 99 be a Uniform space with uniform Topology
Tq induced by @£ If A < X, then

Ta-IntA = {x g A : there is a member Ug @ s:ch that Ulx] < A} (or
simply, we write Int A instead 7,-IntAj.

Proof : Let B = {x ¢ A : U[x] < A for some member U'e #}. We show
that B € Ty. Take x & B. then we find a ‘member U e w such that
Ulx] < A; Also we find a member V € wsuch that VyV < U, If u € V(x| and
y € V[u], we have (v, y) € V and (x, u) &€ V; Therefore, (x, y) e VyVie y
e VyVIx]l. : i

or, V[u] < VoV[x] < Ulx] < A

Therefore u € B. 1o otherword, Vix] .< B. Hence B is open. Further, B
contains every open subset of A, and consequently 1t is the Largest open subsel
of A le. B = Int A. _ :

Remark 1. If U e %, U[x] is a nbd. of x in (X, 1.,

‘2. The family of all set Ufx] as U comes from %#/is a base for the nbd. system
at x. 7

- Theorem 1.4. Let (X. %4 be a Uniforma space with a Uniformity # and
14 be the Uniform Topology on X induced by # If A < X, then T ,-closure
of A (of simply Closure of A)

' = [UA] 0 e w.
:Pmﬂf A point x € A (Closure of A w.rt. T, if and onty if for each

U € A, U!'«:] cuts A non-vacuously. Now U[x] intersects A non- m-:,uou*-,ly if and
only if x eUT'[A]

Because, Ulx] m A # ¢ iff p eUx] m A:
ie ilf peUlx] and p €A;
ie. iff (x. p) el and p & A;
ie it (p, x5 = U™ and gEA;
ie iff x eU A]
Since each member of %/ contains a symmetric member e #4
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We conclude, x € A iff x EU[A] for each U e %

The proof is now complete.

Given a uniformity %/ in X, the uniform Topology T, mtly be used to
construct the product Topology for X x X. Members of % have an intimate
relation with this product Topology. We shall presently see that the family of

all open s}'mmatr:c members-of %£1s a base for % To that end, we nead the
following Lemma

Lemma 1.1. If U € % there is a symmetric member V & % such that
Ve e O
~and (i) VeVoV = U{V[x] x V[y] : (x. ¥) € V}:
Proof : (i) By axion of Uniformity ﬁre find a member H e 2 such that
HeHc U i L
Take W=HNnHsoWisa svmmetric member of % such that
WoeW ccHeH c U from (1).

Taking W in place of U, we obtain a symmetric member V e % such that
VoV W, therefore Vo Ve Vo VaWoWiand Ve Ve Ve Vo VeV o
c WeoW < U from above, ‘

Theorem 1.1. now applies; we take U = V in Theorem 1.1 and find atonce
that Vo VeV = U{V[x] x V[y] : (x, y) € V).

This is (1i), and the proof of the Lemma is complete.

Theorem 1.5. If U e % then Int (U) € % and thc farmiy of all open
symmetric members of 9 is a base for %/

Proof : If E c X x X, we have Int E = {(x, y) : U[x] x V[y] ¢ E for some
U, V e %). By axion of University (U 1 V) € %; so |
Int E = {(x, v): V[)i]_ x V[y] ¢ E for some V e %4. Now Lemma 1.1 says that
there is a symmetric member V cedsuchthat VaVeoV < U, and .
VeVoVW=U{V[x]xV]yl:(x. y) €V} Hence every point of V e Int U ie.
V c Int U, and by Uniformity axiom Int U € %, and in consequence the family
of all open symmetric members of % is a base for %
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By Theorem 1.4 for: x € X we have Tg-closure {x} = n {U[x] : U e 2.
So (X, T4 is T, (Hansdorff) if and only if m {U : U € 494} is equal to Diagonal
A. In that case (X, T4) is also said to be separated.

§2. Let (X, 1.5 and (Y, T4) be two uniform spaces with uniform topologies
Ty and (X. T,) respectively induced by given uniformitics # and #, and let

Fi(X, Ty — (Y. 73 be a function.

Definition 2.1, f* X — Y is said w be vniformly continoous if and only
if for cach member V € ¥ the set {(x, v) e X x X : (f(x). l{y)) e V} is a member '
of 9 '

The above statement may be re-phrased like :-

It S(-¥) is a subbase for ¥ then f is said to be uniformly continuous iff
£5-1(V) e # for cach meniber V e S%( %), where fa(x. y) = (f(x), f(y)).

Explanation : Let X = R, and for each +ve rlet V. = {(x, y) € R x R;
| x = y | < r}; Then the family {V,};.q of subsets of R x R forms a base
for a Uniformity % known as usual uniformity for reals. So, the induced .
uniform topology T4, shall consist of members like I, = V[x] = { .y_ R :
(x,y)eV,] ={yeR:Ix-yl<r)={yeR :x-r<y<x+r}
= an open interval (x — r, X + r) as x €R; These members act as basic open
set in T4, — confirming that 7.5, is the usual i:mmlégical-nf reals. So, as per
Definition 2.1 above, a real-valued function f of a real variable is unifémﬂy ;
continuous if given a €> 0, there is a +ve 8 such that | £(x) - fty) I'< € whenever
bx -yl < This is in agreement with isual and familiar notion of uniform
continuity of f. We also know that uniform continuity of f implies its continuity.
The same is also true in a general uniform space. ; ' '

Theorem 2.1. Let (X, %) and (Y, -r-}' be two uniform spaces with induced
‘uniform topology T4 and T, respectively, then every uniformly continuous
function : X —> Y is continuous relative to uniform Topology.

Proof : Let f: (X, 24 — (Y, ¥) be a uniformly continucus function ;
Take H to be a nbd. of f(x) in (Y, T4, x €X. So we find a member V
€ ¥ such that ' / :
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VIR < H,
and H{VIfO1)

={y eX : [ly) e VII{x)]}

= {y e X : (f(x), f(y) eV}
57V} [x] where £(x. y) = (I(x), f(y))
a nbd. of x in (X, Ta).

]

That means ©-'(1) becomes a nbd. of x, and f is rendered continuous at

x € X, Since x is any arbitrary member of X, we have proved Theorem,

§3. Suppose for cach member o in an Index st A, (X #4,) is a uniform space ;
then the product Uniformity for X{X, : '« € A} is the smallest Uniformity
such that projection functions from the Product X{'Xm : oL € A} into each
co-ordinate space (X,, 24,) are uniformly continuous.

The family of sets of the form {(x, y) : (Xg Yq) €U}, for oe A and U
& %, forms a sub-base for the product Uniformity. If x e X{ Xy : o € A}, then
sub-basic members of the nbd system at X (with respect to the Product Uniform
Topology}, shall be obuained from: the sub-basic members for the Product

- uniformity. Thus the family of all sets like {y : (Xq. Y) €U} becomes a sub-

base for the Nbd. System at X. Clearly, a base for the Nbd. system at x with
respect to induced topology from the product Uniformity is the family of all
finite intersections of sets of the form {Y : Y, e U[X,]} foro.e Aand U & %%,
But this family is also a base for the Nbd. system at x with respect 1o the product
Topology; and therefore the product topology is the lopology ol the product
Uniformity. ' |

Theorem 3.1. A function f on a Uniform space to a product of Uniform
spaces is uniformly continuous if and only if composition of f with each
projection function into a Co-ordinate space is uniformly continuous.

Proof : If { is a uniformly continuous function with values in the product
X{Xy: oe &},'then each projection function Pe,, is uniformly continuous, and
we know that composition Pr,p [ is again uniformly continuous.



Conversely, i’ cach pr o f is uniformly continuous for cach « e A, and
it U is a member of %, in Xg, wen {(u, v) (P f(u), p o f(v)) e U} is a
member of the uniformity 7 of domain f. Now we write this set as
£ [{(%, ¥) : (Xe» Yo €U}L. So, inverse under f; of each member of a sub-
base for the product Uniformity is a member of ¥ and thercfore f becomes
uniformly confinuous. '

Theorem 3.2. Let (X, ) be a Uniform space and let d be a metric for
X.d: X x X - R is uniformly continuous if and only if {(x, y) : d(x y) <
r} is a member of 9 for each r > 0.

Proof : For each r > 0, take V. = {(x. ¥) : d(x, y) < r}. It suffices to show
that Vg, € ‘% if and only if d is uniformly continuous. Let U €% then sefs
{0, ¥), (u, v 2 (x, u) €U} and {((x, ¥), (u, ¥)) : (v, v) €U} belong to
the product uniformity, and we find that the family of sets ‘of form
Lx, ¥), (u; v)) : (x, u) €U and (y, ¥v) eU} is a base for the product Uniformity.
If d is uniformly continuous, then for each r > 0, there is U &% such that if
(x, u) and (y, v) belong to U, then ld(x, y) — d(u, v) | < r. Say, in particular
(u, v) = (y, ¥), then it follows that if (x, §y) e U, then d(x, y) < r. -Hence
U < V4, and therefore Vy, 9 |

For converse part, if both. (x, u) and {}r, v) belong to V., then
bd(x. y) = d(u, v)| < 2r because d(x, y) = d(x, u) + diu, v) + d(y, v) and
d(u, v) = d(x, u} + d(x, y) + d(y. v). It follows that if Vdr &% for each +ve
r, then d is' uniformly contmuuus '

Theorem 3.2. Opens the gate to develop relation between Uniformities

and metries (or pseudometrics). The reader may see the Literature as in
Kelley’s book in Chapter of Uniform spaces.

EXERCISE - A
Short answer type questions

1. Construct a Uniformity % for the sp.mc R of reals to induce the usual topology
for R.
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Show that a metric space is a uniform space.

Over a non-empty set X obtain (a) the largest uniformity and (b) the smallest
uniformity for X, : :

EXERCISE - B

Show that the family of closed symmetric members uf a Uniformity %/is a base
for % :

Deseribe the product Uniformity in the product X{X, @ o eA} where each (X,
/) as o €A is 4 uniform space.

- Prove that a continuous function of a compact Uniform space into a Uniform space

is uniformly continuous.
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UNIT 1

(Contents : Metric spaces, metric Topology, convergent and Cauchy sequences,
completeness, metric space of all real sequences, complete metric spaces I, Cla,b];
Metric sub-spaces, separable metric space, continuous functions, IIumeammpmsm
Isometry, C(}mpac:t metric spaces, Sequential compactness, Arzela- Asmh Themem)

§ 1.1 ME TRIC SPACES :
Let X be a non-empty set; so the Cartesian product XX of all ordered pairs (x, y)
of elements x, y € X is also non-empty.

Definition 1.1.1. A function d : X, X — R (reals) is called a metric or a distance
furiction over X if it satisfies following conditions, known as metric or distance
axioms :

(M.1) d(x, )2 0for all v, y € X, and d(x, ) = 0 if and only if x = y. (Property
of non-negativity),

[M.E} d(x, y) = d(y, x) for all x, y € X (Propeity of symmetry).

(M_B} dx, z) < dlx, y) + d(y, z) for all x, y and z € X (Property of tuang]e
inequality).

If  is a metric on X, then the pair (X, d) is called a metric space. In a metric
space (X, d) if x,€ Xandrisa tve real, we have
Definition 1.1.2. The subset {xe X :d(xy, x) <r} of X denoted by B(xp) is
called an open ball in X, centred at x, with radius = r.

For example, if d(x, y) = [x — y| for any two reals x, ¥ € R, then (R, d} is a metric
space and for x, € R and r any +ve r, open ball B(x,) = {x & R: |x - Xgl < r}

={xe R x-r<x<x+r}

_ =an open interval (x; — K X + ) with
mid point x, and length = 2r.

Similarly, in the metric space ¢ of all complex numbers with usual metric we
find an open ball 5(z,) looks like an open circular disc with cenire at z, € ¢ having
radius = £

Definition 1.1.3. The subset {xe X :d(x,, x) =7} of a metric space (X, d) is
called a closed ball centred at x; with radius = r.

The subset {JC-EX 1d(x,, x)=r} of X is called a sphere centred at x, with
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radius = r. Tt is also called boundary (Bdr) of open (closed) ball centred at Xy having
radius = r : :
The open balls in a metric space (X, d) form a base for a Topology, called metric
Topology 7, (induced by the metric d) on X So every metric space (X, d) is a
topological space with metric topology T, This metric topology T, is Hausdor¥ (T5).
Definition 1.1.4. A sequence 2,0 In (X, d) is said to be a convergent sequence

if there is a member v € X such that, jl_ﬂ d,x,) =0

Or, equivalently, given any +ve ¢, there is an index N such that d(u, x ) < &
when 1 = N :
L {x,} is a convergent sequence in (X, d) withu € Xand Imd(u,x)=0 o
write limx, =we X, and u is a unique member of X, because metric space is
IHau&du?ﬂ'.

Definition 1.1.5. A sequence {x,} is said to be a Cauchy sequence in (X d)if

d(x,,%,)—>0.as n,m > w,

Or, equivalently, given any +ve &, there is an index N satisfying d(x,, x,) <&
whenever n, m = . :

It is an easy exercise to see that in a metric Space every convergent sequence is
cauchy, but converse is false, :

Definition 1.1.6. A metric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent in X,

For example, real number space R with usual metric d(x,y)=|x-y|. x, yelt

is a complete metric space. This is what is known as Cauchy’s General Principle of
convergence; and essentially by same reason the Euclidean n-space R" consisting of

all n tuples of reals like x= (5G.%,...%, ), x. R is also a complete metric space
with usual/Buclidean metric where d 2[J_g-‘:. ,}j}
:ZFX.‘ — ¥ fzﬁ o {xir x,l!"--:'rn}} ,}f:':yhyz}----sd}'"}ﬁ I{“ :
=1 %
Example 1.1.1. The collection S of all sequences of reals is a complete metric
Sl e
= . 1 X = e » £, i

space with meitric .-lﬂ{..} ») ‘Zﬂ: PLE|E ] Whete y=(2 &0 )
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Y= (7, ) €5 . The th.s. series is convergent because each term is domoninated
by a corresponding term of a convergent geometric series. Here is a routine exercise
to see that metric axioms are all satisfied. For completeness part we remark on

: 2 )
passing that if @, ,, = 0, then a,,, — 0 if and only if -—+”L —>0 asn, m —w,
. ¥ B . - .a

i R
Take {x,}as a Cauchy sequence of elements in §

L e e o e L

Corresponding to @ + ve & we find an index N such that
2x,. %, )<¢e forall mm = N
& (H) g (m)
& & |

g b -

i <&
=20 1+ |"fr_{”3' _é{m}' for all s, m = N

As individual term in series above is 2 0, we appeal to the remark made earlicr
to say that |£"~£ |50 as n,m - And hence for each co-ordinate i by
Cauchy’s General Principle of Convergence, (£} is convergent.

2

3 3 maivan

' {0
Put lim & =£0, -1
- _{£00) & (0) b 4R ,
Taking Xy —(é?i .62 ) we find ye§ and passing-on limit as m >0 in

(1.1.7) we have

o0 {h]
i __L Fgf{”l_‘fj{'}l qgfﬂ &
=PRI O) AL Gee

That means, ii_l;‘;lc o(x, ,.E:;} =0 :

rlimx, =x;€8
o i =W T =0 = ;5
So the sequence space § becomes a complete metric space, _
Remark . The convergence of sequence of elements in § as shown above is
known as co-ordinatewise convergence; that is to say, lim x, =x, in 5,
X i H—ro i

where x, ={£"} and x, ={£}, if and only if tim

B—»ol

H 0y -
‘;:!_'f }=§;‘(js
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fori=1, 2, 3, .....; The convergence is not necessarily uniform,
Example 1.1.2. The sequence space /[ {'[ < p < o) consisting of all sequences

§=(§i,§2|..__,§”, ) of reals with Z|<f |p=+m i3 3 complete metric space with
i=|

: JA
metric 2(x, }’} {Zlfr-—rnlﬂ F, for if:(fl,g;;---}p.l’:(f?up'fiza----]’éf :

Emmple 1.1.3. The function space C[a,#] consisting of all real va[ued continuous
functions over the closed interval [a, b] is a complete metric space with sup metric

plf,8)= iy | f©) -2}, as f,g<Cla,b]
azfs
The last two examples appear in Book PGMT 2A. They are referred to there.
§ 1.2 SUB-SPACES : ;

Let ¥ be a non-empty subset of a metric space (X, d). There is a natural metric,
namely the restriction dy of d to ¥'x y. ;
Definition 1.2.1. The metric space (¥, dy) is callcd a sub -space of (X, d).

Theorem 1.2.1. A subset 4 in ¥ is:open‘in (¥, dy) if and only if there is a subset
A, in X that is open in (X, d) suchthat A =¥ n 4,.

Proof : Let x € X and y € ¥ and r be a +ve number # and let B (x, r) and
Ry r) denote open balls Lentred at x and at y iespectwcly with radius = r in (X, d) -
am:l in {¥ ).

Then we have By(y,r)=Y B, {}»,r} for all yel , and p=0 o (1.2.1)

' Take 4 as an open set in (¥, dy), then we know that A i3 a Union of some open balls
ol (¥, dy); say of {By(y,r)} asy € 4 and r> 0.
Thus 4 = UBy(y.7) .
=Y By (y,+)} by (1.2.1)
=¥ ~{UBy (1,1}
=¥Yrd (say)
- where A, is a union of open balls in (X, &) and 4, is an open set in (X, d).
C(mﬂ_.re_rsclj;;, let A=Y A4, where 4, is an open set in (X, d). Fory € A, there is
an open ball By (y,r)c 4, and hence By (y,r)=Y B (y.ric(YnA)=4 So
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every member of A attracts an open ball in(¥ dy) ie. A is an open set in (¥ dy).
The proof is complete. '

Corollary : A is closed in (¥, dy) if and only if there is a subset 4; of X that is
closed in (X, d) such that A=Y 4. (IF A=Y A, we havc Yiv4 :l’ﬁ{X‘rA‘),
and now pmceed)

Definition 1.2.2. A metric space (X, d) is-said to be separable if and only if
there is a countable subset 12 of X such that D is dense in (X, d) (or equivalently, 5
(closure of 1) = X).

For example, real number space R with usual metric 18 separable, bemu% the .
set () of all rationals if R is dense in R, where we know that ) is couniable.

Theorem 1.2.2. A sub-space of a separable metric ﬂpacc is separable.

Proof : Let (¥, dy) be a sub-space of (X, d) which is a «;eimarable metric space.
Let A={x,%,....%,..} bea countable set in X such that 4 = x.

If yé ¥, then for each +ve integer m the open ball B {.}’?ﬁ?‘) ‘meets A at some

,pnint, say =.x,,.
.Thus X E {A "“"-B[J”?%)}.
| So, Open ball E[Jc”,}-:;)ﬁ};?ﬁ@} |
Put .ﬁ.z!{n,m}:ﬂ{x“?#)ﬁ.}’igﬁ}_ i;hus I}.?ﬁ;‘ﬁ. For each {:'rr,m)e.a.‘h, take a

member y,,.mf—'{ﬁ(x,,,;]?-)ﬁ}’}, and put B:{ynlm:(n,m]eﬁ}. Therefore B i3 a

countable subset of ¥ because A is so. We now verify that B is dense in (¥, dv).

Take yct andr = 0; choose +ve integer m so that —l— = ér As said above there is
1

an integer n such that ¥, € B (,1«',—): Then (n,m) e ﬂ., and we have

d{.}' ynm){‘d(y':xn}-l-d{xn?,)nm){m+;_ i {T'

That means, ¥, € B(y,r). Therefore ye B in (K dy), or, Bis dense in (¥ dy).
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§ 1.3 CONTINUOUS FUNCTIONS :
Let (X, &) and (I p) be two metric spaces. ;
Definition 1.3.1. A function f: (X,d)— (¥, p) is said to be continuous at a
pomt e X, if and only if given a +ve &, there is a +ve 8 (depending on & and c)

such that e( f E:x'), f©)=e whenever d(x,c)= & .

or equivalently, f(B(e,6)) = B(f(c).€).

/S is said to be a continuous function if / remains continuous each point of X.

Further details on continuous functions over metric spaces may be seen in
Book PGMT 2A.

Homeomorphism, Isometry : .
Definition 1.3.1, A fanction 1 :(X,d)— (¥, p) is said to be a homeomorphism
if fis 1-1, onto (bijective) and both f and ! are continuous functions.

If there is a homeomorphism between [X, d) and (, @), then two metric spaces
(X, d) and (3, p) are called homeomorphic,

Explanation : If f is a homcomorphism of X onto ¥ then 77 is so between ¥
and X. Also it is a foutine matter to see that composition of two homeomorphisms is
agam a homeomorphism; thus in the family of all metric spaces the binary relation
‘of being homeomarphic’ is an equivalence relation,

Example 1.3.1. Consider the metric space R of reals with usual metric and
function T: R — R given by T(x) = x +a, where a is a fixed real number, and x e J.
Then this translation function (equals to ldentity function when g = 0) is a
homeomorphism; here 77! . p s g is given by T'l{x] e R . Similatly one

shows that for any non-zero real A, multiplication function M 1:R—> R given by

M;(x)= Ax,xe R is a homeomorphism, where M, " =M o

We know that family of all open sets in (X, d) forms a Topology, called metric
topology 7, on X induced by d. Any property in a metric space (X, d) that can be
formulated entirely in terms of members of 7, (open sets) is known as a Topological
property. : : .

. Consequently, homeomorphic metric spaces have the same topological properties
like convergence of sequences in the space and continuity of functions over the
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space. Following example shows completness is not a topological property in a
metric space. ' _ :
Example 1.3.1. Take X ={1,2,3..} and Y={11,1,..}. Regarded as a

subspace of the space R of reals with usual metric we find that spaces X and ¥ are
discrete metric spaces (every subset being both open and closed); thys the function

B X =Y where h(n)=n"" is a homeomorphism of X onto ¥ Since X'is a closed

subset of R which is a complete metric space, the space X is complete. On the other
hand ¥ is not complete.

Definition 1.3.2. A function f:¥ — Y that is onto (surjective) is said to be an
Isometry if e f(x), /( ¥))=d(x,y) forall x,yeX. :

Explanation : ldentity function on X is an Tsometry of X onto itself. Also a
transformation of rotation like x'=xcos@+ysing, y'=-xsind+ycosf 1s an

Isometry of Eudidean 2-space R onto itself with usual metric. Also an Isometry is a
homeomorphism. Thus two metric spaces that are isometric are indistinguishable m
respect of their metric properties.

Example 1.3.2. In metric space (X, d) take xy e X .
For xc X, Let f,:x—>R .(spacg} of reals with usual metric) be given as
£O)=d,9)-d(y,%) for yeX.
Then show that x —» /. is an isometry of X into C(X) where C(X) is metric space of

all real valued continuous functions over X with sup metric

| f —gll=sup| f(»)-g(¥) <.
rEX

As distance function a' is continuous, it follows that f, is continuous for all xe X.
Solution © Take u, v € X, so we have

fn{y) zd{y: .H)_d(.}}! xﬂ} : }
and f,(»)=d(p.v)—d(y,x) foral yeX

So, | £,() - £, = d(y,u)~d(y,v)|=d(u,v) which is independent of y € X;

taking the sup over LH.S. we obtain
3 yeX
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sup| £,00) - £,0) 1= d(w,)
X

or |ty ~ A ll=d,v) ... 1.32)
Putting y = u in (1 3. 1) we haﬁ,.le’.

Je)=~d(y,x,) and f,(u)=d(u,v)-d(y,x,)
So, | file) = f(u) |= d(u, v) : :
Now sg?!ﬁ,'(y}—ﬁ,(y}Iélf;.(?f')—.f;(w)!=d(u,v) ....................... - (133)
: b :

from (1:3.2) and (1.3.3) we obtain
| 1 = £ ll=dl(u,v).
Thus x — f, invites an Isometry of X into C(X).

§1.4 COMPACT METRIC SPACES :

Some important properties of reals as we encounter in real analysis had motivated
. more important concepts in a metric space like completeness and compactness,
Cauchy’s General Principle of Convergence is the driving force behind completeness
in a metric space. Essence of Heine-Borel Theorem could be found in concept of
compaciness in a metric space, :

In consequence, it had been an inevitable task with urgency to identify compact
subsets in a metric space. Russian Mathematicians like Alexandrov and Urysohn
had been responsible to put forward notion of compactness via ‘open cover’ in the
space; on the other hand close to Bolzano-Weirstrass property is classical analysis
concept of sequential compactness owed to Frechet in a metric space. And now we
know for certain that these two routes are equivalent in describing compactness in a
metric space. For details in this context sec the book PGMT 2A.

Tt has been possible to discover that a subset in Euclidean n-space R” with usual
metric is compact if and only if the subset is a bounded and closed set in k"

Given a metric space X it is often hard to decide which subsets of X are compact,
and which are not. Our present task is the job of wentifying compact subsets of a
very mmportant and useful function space of some continuous functions that we
presently discuss below. The concerned target theorem in this connection is Ascoli-
Arzela Theorem, ' :
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Definition 1.4.1. Let (X, d) denote a metric space.

‘(a) A family O = {4, };., of open scts A;in (X, d) is said to be an open cover for
X if every element of X belongs to at least onc member 4, of the family (. That is to

say, X <Ud,
. :&ﬁ

{b) A sub-family of an open cover for A which by 1tsc1t is an open cover for X
is called sub-cover for X.

(¢) (X, d) is said to be a compact metric space if every open cover for X has a
finite sub-cover for X

Explanation ; By a finite sub-cover we mean that the sub-cover consists of' a
finite number of members only. Consider a family {(-n, M)}y (W = set of all

natural numbers). 1ts members are open, intervals, and hence open sets in the metric
space R of reals with usual metric. Tt is an open cover for R; because R=U(-n,n),

Cleatly, this open cover possesses no finite sub-cover for R. That is why, R is not
compact. :

Definition 1.4.2. A suhset G of (X, a’) is said to be compact if as a sub-space of
(X, d) it i3 compact under definition 1. 4.1,

For example, although R is not compact with usual metric any finite subset of K
becomes compact,

Definition 1.4.3. (X, d) is said to be eequcntlally compact if every sequencc in
X has a convergent sub-sequence in X, :

It is a bit lengthy exercise to conclude that a metric space is compact if and only
if it is a sequentially compact. See book PGMT 2A.

The function space C[a, b] of all real-vaheed continuous functions over a
closed interval [a, B].

We know that l’“[a h)is a completc metric spa,Le with respect fo sub metric
p(f,g] = sup | f(O)—~g@)], [.geCla,b]. But Cla, #] is not compact with respect
azich

to sub metric, because Cla,b] is not bounded:; for all constant functions like 7, ({)=#n

for g <1< hsatisly p(f,,0)=n—>w as p—» . However there are compact sels in
Cla, b]. In searching then we need some Definitions, -
Definition 1.4.1. (a) A subset M of Cla, b] is said to be |uml+nrrmljr bounded lf '
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there is a +ve constant K such that |x(#)|< K forall fin g <¢ < p and for all members
xeM . _
(b) Subset MM is said to be equi-continuous if given any +ve €, there is g +ve &
{de:pending on & only) such that | x(f,) ~ x(£y}| <& whenever |f ~t, |< S (4,15 e[a.b])
for all members x € M : .
Lxample 1.4.1. Show that the subset {f,}< C[0,1] is equibounded where
Ly =1+t0s051.

Solution : Here ]_,ﬁ!(r}|=|l+ﬁ|£1+|§|£I+%£2 for all # and for all 7 in
0=t <=1. So the conclusion stands.

Theorem 1.4.1 (Arzela-Ascoli Theorem) : A subset M of C [@,6] is compact if
and only if M is uniformly bounded and equi continuous.

Proof : The condition is mecessary : Let M be a compact subset of Cla,b]
(w.r:t. sup metric). Then M is bounded, because a compact set in a metric space is

bounded and closed. Thus we find a closed ball say B,(x,) centred at x; e Cla,b]
with radius = # such that :

M 'L'._Er{.xn]

Thus  SUp | X(1) = xp (1) | <7

Now  x(£) = x(f) - x,(£) + x,(f) and
sup [X(1)|< sup [ x(1)~x%o (D) |+ sup [x5(D)| <r+F, say,
asreh azi=h Pl Eo ]

n

where & = sup |xy(2)].
A==k X

That means | x(f)|< (7 +R) =X (say) for all £ in g<r<p and for all xeif.

© Hence M is uniformly bounded. -

For equi-continuity take a +ve &,

Since M i3 compact, we: find an £ —pet = { HE Y x“(_::}} for M-
Since every real-valued continuous function over a elosed interval is uniformly

continuous. S0 here each of the members x,x,,..%, of Clab] is uniformly
continuous in [a,b] .
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So, for each x,(1) we find a +ve &, such that
|x; (1) - %, (1) [« 5 whenever | ~1; | <&, .15 €la.b].

Now take a +ve & = min {d,} . Then we have
L, (1) —x; (15} | {% whenever |1, —1, |< 6, 1.1, €[4, b] foralli=12.. .k
Now for every member x e M, we find a member, say, x, from %—nct, such that

px.x;) ﬂ% (o= sup-metric of Cla,b]).

If 1.f1 t, [a,b] and |1, —1, |< & we have
| x(t)— x@z}l“x(ri]‘ w0 )4 () = % () |+ x(t) - ()
< sup X501+ 4) -3 )|+ sup | 5,0) x|

ast<h
< plx, %)+ -;5+p(x, xr.} <E.

This inequality holds for all 1.1, e[a,b], with [ -1;]<0 and for all members

ye M . So M is equi-continuous.

The condition is sufficient : Suppose M is uniformly bounded and equi-
continuous : we show that M is compact. Because C "[at.B] is complete and so is M, 1L
%ufﬁceﬂ to show that every sequence in M has a Cauchy subseguence. Let D= (1,15

_..) be a countable dense set of reals in [a, h.

Suppose 5, =(fi1> fizs iz} be any sequence of elements in M. By uniform
boundedness property of M. We find a +ve K such that
| f{nyj= K for all ¢ in g<t=h and forall feM. ... LYy (1.4.6)

Let us examine real sequence

il Fiala): fialta)so.. f}m{fﬂ 5
from (1.4.6) it is clear that this is a bounded sequence of reals and has a-
- convergent subsequence.

Let S, =(fo1, fo2: fa3:--} be a sub-sequence of §, above such that

L), faatn)s fo3(ta),......} converges.
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Now examine real sequence {fﬂ(@},f22{1‘3),f23{.63},.....}, and by similar

' ~ reasoning as above, we have

Sy ={fir, f2: f33,....} as a subsequence of S, .s_uch that

{falts), f12(53), fa3(83),..... } s convergent,
- We continue this chain to construct 57, S5, 5, ... of sequences of functions like -

_ St ={h Sz fiarn}
Sy =1 Joas Fozseonn}
Sy = {.f_:l.iafzz:fsa,-----}

where §,, constitutes a subsequence of S, (m =2,3,...) with the property that
Lt L) fialt,), ..} is a convergent sequence of reals.

Now. put f,=f, (n=2,3,4,) then e Jau S} is the diagonal
subsequence of 5. From mode of construction

x, el and {£(1), Jolty)s s fi(ly)...} 18 & convergent real sequence,
If i > k, consider | f,(z,)~ fix(t,)] for i > &k > n and knowing that both

T, fu (1) are members of convergent real sequence

) Sl )}
We hﬂ.‘v"ﬁ |f.f ('r::) _f.‘{, ﬁJJ I"_-:’ 0 as j:k —» oo, Thus {fi'{'fn :_"' f! {In)? _f:;(r”)»..----} is a

Cauchy sequence of reals.

' Finally, take any +ve €. Since M is equi-continous and S §, c M, we find a
+ve 8 such that | f, {Q = £, () *:% whenever |1 ~{'|< 4, 1, I‘IE_ [a,b] for all members
fes

N.Ow consider the family {z, ~d, ¢, +&)} of open intervals with mid point 7, € D.

It 1 routine verification with dense property of D in [a b] that this family of
open intervals becomes an open cover for [,b]. By compactness of [a,h] we obtain
a finite sub-over, say

[a,h] = rtefﬂﬁ” ~d. 0, +0) and 2shn=m,
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Again {f,(1,), f(,),.....} is Cauchy; thus al+ve integer K, is there such that

1ﬂ("n)—ﬁc("n}[{% for all 2<n<n,

If 7 is any position of [a, b], we find # with 2 <w<n, so that 1,—8 <1<t +&

and for i, K = K; we have

| AO= L OISLAO= L)1+ 146 - ft,)]
H )= f.(O)] {C%‘+'§-+%:g

That means supb.{ﬁ(r}—fk(r)[f:&: for i,k = k,
=

asd

or, o fr)se for ik = ky -

or, S=if fz',“,,} is a Cauchy subéequcnce of 5.
The proot is now complete. :

EXERCISE A
Short-answer type questions :
1. Show that compactness is not a heriditary property in a metric space.

2. Give an example to show that a closed bounded set in a metric space may not be |
compact.

3. Showthat fix) =x + @ or = -x + a where a is a fixed real is an Isometry on
the space R of reals with usual metric.

4. Prove that any bounded sequence of reals has a convergent subsequence.

5. In a metric space (X, d) if limx, =xe X show that {x, }{x} is copact.

H—pi

EXERCISE B
Broad questions

.I, Show that the closed ball & = [«T : GS;J% | x(2) 31} of [0, 1] with supmetric is not
Bt )

compact.
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Prove that only Isometries of the space R of reals with usual metric are
Jix)y=x +taand f(x¥)=-x+a where g 1s a real number.
Give an example of a Homeomerphism that is not an lsometry.

Let f be a real-valued function on a compact metric space (X, d), show that f
assumes its maximum and minimum on X,

Verify that closed Unit ball in sequence space /, is bounded without being totally
bounded. '

Let X denote the metric space of all real polynomials: p(#) in 0<s<|; show
that X 15 not a complete metric space with respect to sup metric.
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UNIT2

(Contents : Linear spaces, Dimension of a linear space, Normed linear space (NLS),
Banach space, C[a,b] as a Banach space, Quotient space of a NLS, Convex sets,
their algebra, Bounded linear operator; its continuity, Unbounded linear operator,
Norm ||T|| of a bounded linear operator T, Formulae for ||T]|.)

§ 2,1 LINEAR SPACES

Definition 2.1.1. Let R (g) denote the field of reals (complex numbers) that arc
also called scalars. A linear space (Vector space) V' is a collection of objects called
vectors satisfying following conditions :

I. Fis additively an Abelian (commutative) Group, the identity element of which
is called the Zero vector denoted by 0.

II. For every pair (¢ v), o being a scalar and v € I there is a vector, denoted by
ot v (not var), called a scalar multiple of v such that

(@) lLv=v forallve K ;

(b} a. (u+v)=cu+ay for all scalars & and for all vectors w,vel’.

() (a4 F)v=av+ B for all scalars o and £ and for all vectors ye ]’ .

(d) a.(By)=(a.B)v for all scalars czand Band for all ye) .

Example 2.1.1, Let R” be the collection of all # tuples of reals like
i:{rl,xz,___x,,); x; being reals. Then R" becomes a linear space with real scalar
field where addition of vectors and scalar multiplication of vectors are defined as

X4 Y =%, X9, ) F (. Vo ) = (5 1 )0, Xy H 0,0, %, 1), ) and
Cax=alx,xy,. . x,) = (ax,axs,...ax,); x,yeR" and o any real scalar.

Here K" is also called Euclidean s-space with the zero vector Qi—- (0,0,...,0) (all

co-ordinates are zero), and it is a real Linear space.

_ Example 2.1.2, Let Cla.b] denote the collection of all real valued continuous
functions over a closed interval [a./]. Then (C{a,b] is a real lincar space (associated
scalar field being.that of reals) where vector sum and scalar multiplication are defined
as under © :

(f+8)0)=FO+8W); azi=b, and f,geClab]
and () =af({) ; a=t=h and & any real scalar. :
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- As we know that sum of two continuous functions is a continuous function and
so 15 a scalar multiple of a continuous function, we see that ftgand of are members
of Cla,b] where f, g € C[a,b] and o is any scalar. Here the zero vector equals to the
zero function (0(f) = 0, @ <¢ <b) over the closed interval [a,b].

" There are many other linear spaces like the sequence spaces (1< p<o),

polynomial space p[a,b], function space L,[a,b], that we encounter in our discussion
to follow. ; '

Definition 2.1.2. (a) If A and B are subsets of a linear space V then
A+B=fa+b.acAandbe B} '

(b) For any scalar A,

Ad={Aa ae A} ;

The subset 4-B=A+(~1)B; and taking A - zero scalar we find 04 ={0}.
Further we see that A + B = B+ 4, because vector addition is commutative, However
A~-B+ B- 4. Taking A and B as singleton and 4 = {(L0)}, B ={(0,0} in Euclidean
2-space R’ we find A—B={(1,0)} and B-A={(-1,0)}.

Further for any scalar o we have ad = {aa:ae A}

Hete is a caution. In general, 4+ 4 #24.

Because take 4 ={(1,0), (0,1)}: Then we have

24={(2,0),(0,2)} which is not equal to 4+4
where A4+ 4 ={(2,0), (0,2), (LD} :

Given a fixed member gV, the subset a+B={a +b:be B} is called

translate of B. : E

§ 2.2. Let X denote a linear space over reals/complex scalars. Given X[, %, X, in

ey wkgp

X and &,a,..,a, as scalars, the vector @yx, +a,x, +ota,x, of X is called a

linear combination of x;,X,.....,%, .

A subset [ of X is said to span (gene_ratle}' A if and only if every member of X is

" a linear combination of some elements of £,

Elements x,,x,,....,x, of £ are said to be linearly dependent if and only if there
are corresponding number of scalars a;,a5,.....a, not all zero such that

ax +aX; +. L tax, =0
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A finite number of elements X, x,,...;x, of X are said to be linearly independent
if they are not linearly dependent. This amounts to say that if

k

zﬂ-’;x =0 implies {xl ay =..=a, =0,
=1

An arbitrary system of elements of X is called hnﬂaﬂ}-' independent if every
finite subset of the given system becomes linearly independent.

Observe that if a set of vectors in X contains a linearly dependent subset, whole

set becomes linearly dependent. Also note that a linearly independent set of vccmrs
does not contain the zero vector.

Definition 2.2.1. A non-empty sub-set L of a linear space X is called a sub-
space of X if x + y is in L whenever x and y are both in I, and also o is in [,
whenever x is in L and o is any scalar. .

Example 2.2.1. Let § be any non-empty subset of X. Let L = the set of all linear
combinations of elements of S. Then L. is sub-space of X, called the sub-space spanned
(zenerated) by S.

The subset = {0} is a sub-space, called the Null—spacc. _

Theorem 2.2.1. Let x;,x,...,x, be a set of vectors of X with x, # 0. This set
is linearly dcpcndent. if and only if some one of vectors x,,..,x,. say ¥, is in the
sub-space generated by X, X5,.., % j '

Proof : Suppose the given set of vectors is linearly dependent, There is a smallest
I with 2<2f=pn such that x,x,,..x, is linecarly dependent; and we have
X Xy otk =0 with not all &’s are zero scalars. Necessarily, we have
ay #0; otherwise xl,xz,....,.i"k_l would form a linearly dependent set.

1 ol Cy_y
n consequence x; = ——E—x, —Lxy ==X
: 3 & k

That means x; is in the sub-space generated by X X3, X3y
Conversely, if one assumes that some x; is in the sub-space generated by
X, X5,.., X3 3 then we have

xp = Bxy + Baxy + o B X
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That means ¥;.%,, .,%, are linearly dependent, and in turn we have the set
(¥, %5,....x, ) as linearly dependent,

Definition 2.2.2. In a linear space X' suppose there is a +ve integer » such that ¥
contains a set of # vectors that are linearly ihdtpcndcnt while every set of 1 + 1
vectors in X is linearly dependent, then X is called finite dimensional and # is
called dimension of X {Dim(X)}.

The Null-space is finite dimensional of dimension 0,
If X is not finite dimensional it is called infinite dimensional.

Definition 2.2.3. A finite set B in linear space X is called a basis of X if B is
linearly independent, and / the sub-space spanned (generated) by B is all of X,

Explanation : If x,,x,,..x, is a basis for X, every member ye ¥ can be
expressed as x :rxixl +a,X, +...+a,x, where scalar coefficients @;’s are uniquely
determined; so x does not have a different linear combination of basis members

Suppose Dim(X)=n (n=1). Then X has a basis consisting of # members: For,
X certainly contains vectors Xy, X000 Xy that form a linearly independent set. Now
for any member x < ¥, the set of vectors X, %y,.., X, plus x w of n + 1 vectors must
be linearly dependent. Now Theorem 2.2.1 applies to conclude that x is in the sub-
space generated by x;, x;,...,x,. Hence x;,x5,...,x, form a basis of X'

§ 2.3 NORMED LINEAR SPACES :

Definition 2.3.1. A linear space X is called a Normed Linear Space (NLS) if
‘there is a non-negative real valued function denoted by || ||, called a norm on X °
whose value at x € X denoted by || x || satisfies f‘ﬂllowmg u::undltmns (N.1) = (N.3),
_ galled norm axioms -

ﬂ_‘@.i} lx[jz0, and [[x]|=0 ifamf; only'if x=0.
(N.2) |axi|=lcr]||x|j_f{}r any scalar of and for any xe X,

(N3)  Ix+pli=llx][+] p]| for any two members x and y in X.

If || || is a norm on X, the ordered pair (X, |i ||) is designated as a NL.S. If norm
changes, NL§ also chan__g,es.

Tn a NLS (X, |1 11) one can define a metric p by the rule © p(x, v) =[x =y || for all
x,ye X . Tt is an easy task to check that p satisfies all metric axioms; and (X.p)
becomes a metric space with the metric fopology called Norm Topology because
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of its induction from norm || ||. We write lim +, ¥ in X off lim [} x, ~ Jffl : this

convergence in NLS X is known as convergence in Norm. Similarly, we define a
Cauchy sequence in NL.S X

A subset B in a NLS X is said to be bounded if there is a +ve K such that
x||=K forall xe B :

Let xpe X', and take a +ve number # Then in NLS X the set
{xeX:[|x-—x,[|<r} iscalled an open ball denoted by B.(x,) centred at Xy having

radius = r, Similarly, we have a closed ball B (x,)={xe x| x=xyll=r): and in
agreement with usual open sphere we encounter in Co-ordinate Geometry we have a
sphere S,(x,)={xe X '|[:r Xy ll=r centred at x; with radius =

Definition 2.3.2. A NL:S (X, || 1) 18 said to be a Banach space if it is a complete
metric space with metric induced from the norm function || || on X

Example 2.3.1. The space Cla,b] of all real-valued continuous functions aver
closed interval [a,b] is a Banach space with supnorm || f || = sup | f5): [ eCla,b].

* Solution : It is routine exercise to see that ([a, 5] is a real linear space in respect
of usual addition and scalar multiplication of continuous functions,

Now put-|| f||= sup | f(1)] for feCla,b] wherein we recall that | f] is also
1 asizh !
continuous function over closed .interval [a,5] with a finite sup value =fllz0.

Also || /|| =0 if and only / equals to the zero function. So (N.1) axiom is satisfied:
For (N.2) take o any scalar (real), then we have for fe( '[a h],

Ila'f[l— p [CTROIE ap le f)|=a| sup | f@)|=la]ll 7.

i

Also, if f, g eCla,b] we have |/ +8ll= sup |(f +£)0)]
= sup | £(0) +g(0)]< sup | £+ sup [ gD =]l £ 1| + 1 g
ast=h a=t=h a=f=h

Thus C[a,b] is a NLS; Now take {f,} as a Cauchy sequence in Cla,b]; So
Nf=Full=0 as, n,m— . Give a g0, we find an index N satisfying

||f“ e II{E whenever m,m= N .
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Thatis, sup | £, (1) F. 0 |<E i

asrsh

Thus for a<t<bh, we have | £, (1)~ f,,(t)]= sup | £,(t) - 1,.(t) | <& whenever
<hi

. ast
n,m =z N . Above inequality shows that the sequence {f} of continuous functions

over the closed interval [a,b] converges uniformly to a function say f over [a,h] and
also f becomes a continuous function over [a 5] So fe Cla,b]. Taking m — o in
(2.3.1) we find =

|:fﬁ{£) —ft)|£& whenev& nzN and for a_]l tima=i=h,
This gives :;S;Eﬁ | f )=ty <& whenever #z N .
oy L=FllcetornzN
That means, m f, = € Cla,b] . Thus Cla,b] ils a Banach space.
Theorem 2.3.1. Let X be a NLS with norm || ||. Then
" 1[|.7c]|—';|y ||E <||x=y| for any two members x,ye X,

(b) || [|: X — Reals is a continuous function.
Proof : (a) We wrile ||x||=]lx-y+pll=llx—p[i+] x|

ol 13 |2 vy o [y | i SOl R Tl e A
Interchanging x and y we have '
Bl B ] i | (s | e i (2.3.2)

From (2.3.1) and (2.3.2) we write
0lxli=llyD=slx=yll
or, [Ixll=llylf< i~y
(b) Let {x,) be a sequence of elements in X’ converge 1o x;

So ||x, —x3]| =0 as x — 0. By (a) we have

s, 1= 1120 ] €116, =% 10 2s 71— 0.
That means, &ﬂ [l %, [ =1l % |l . Hence norm function || || is continuous at x,: As

x, may be taken as any point in X, (b) follows.
Remark : If lim x, =x; and lim ¥, =, in NLS X, then
H—Fol ol
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(a) }ri_lﬂj(xn i}—’“} =X M
(b) lim(Ax,)=Ax, for any scalar A,

Definition 2.3.3. Two norms || ||, and || |}, in a linear space X are said to be
equivalent if there two +ve constants « and b such that
allxll =llxl < bl|xl, forall ze X,

anmple 2.3.2. COI‘ISIdET NL S : R} (Euclidean 2-space) with two norms ]| ll; and

I Il defined by ||, J#I!;—u'l‘ H’ and EII,J’Ilz'*—'mﬁK(lelyl} for (x,y)eRr®.

: Show that two norms are equivalent.

Solution : We have for (x,y)e & [xf <|x[ +|y[* and | y[? <[x P +| p]

Thus |0y lp=max( L YD <l P+ E =+ =l 0l
or, [l <l @3.1) 0

Again (e, ) =54 52 <o +1y P < 2max( oLy DY =201 0)
on sV, @32

Combining (2.3.1) and (2.3.2) we produce
1L SN =21 @D

Therefore two norms as given are equivalent in NLS = R
Explanatmll : If two norms || ||, and || |, are equivalent in a NLS X, then
identify function : (X, || |l}) = (X, |I,) is a hﬂmeamorphmm (In fact, it is a linear
hﬂmemnorph:sm)
§ 2.4 QUOTIENT SPACE :

Let (X || ) be a NLS and F be a linear sub-space 'l.';'le

If xeXx.let x+F={x+y yelF}

These subsets x + Fas xe X are éu&ets of Fin X

Put X/F={x+F:xeX}.
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One observes that /' =0+F, x +F =x,+F ifand only if x, ~x, e I, and as a
result, for each pair x,x, e X, either (x, + F)(x, + F) =D
. or, X+ F=x,+F ' :
Further, if X, X, y, 0, € X, and (x,—x,)e F, (), — ;)€ F, then _
(% + )~y +),) e I, and for any scalar o0 (ax, —axy) € F because F is
Linear sub-space. :
We define two operations in X\F by the following rule -
(i) (XNF x(X\F) = (X|F) '
where (x+F, y+ F) > (x4 F)+(y+ F) = (x+ )+ F
and (if) R(¢)x(X\F) > (XIF)
where (o, x+ F) > a(x+F)=ax+ F
for all x,ye X and o any scalar,

- It 15 now a routine exercise to verify that (X\F) is a linear sﬁace in respect of
above ‘addition’ and ‘scalar multiplication’. Note that zero vector of this Linear
space (X|F) equals to I :

Definition 2.4.1. The linear space X\L where L is a linear subspace of NLS X
is called the quotient space (or quotient space of X modulo L),

Example 2.4.1. Geometrically describe the quotient space RZ where R = the
Buclidean 2-space and I is the Suh—spa,;e represented by a line through origin

(0,0ye R%.

2o T 5 ; : el
Solution : Giver a sub-space 1. L " e

as represented by a line through ; L35 a‘,-*"/
'1__')".:"""" i_w;La S I !

(0,0)e R%, X is any position of R?, /
then x+ /. geometrically represents f,,-"'}’ <,, g

a straight line through x parallel to — .
: ; & & s z

the line represented by L that 15 say s

that x+ L 15 a translate of L through = [y



¥. Further if v is any other position of R, then by Law of parallelogram we obtain
the position x + y and here (x+L)+(y+L)=(x+y)+L is re-presented by the
straight line through x 1 » and it is parallel to L; that is—it is the translate of L
through (x + y) in R

Example 2;4.2. Obtain the quotient space C[{},'% where C[0,1] 1s the linear
gpace of all real valued continuous ﬁmcﬂo_ns over the closed interval [0,1] and L
consists of those members f e (C[0,1] with f{1) =0, i.e. vanishing at # = 1,
Solution : If f,ge L, then 1) = g(1) = 0; Now (f +g)1)=f()+g(1)=0;
So f+gel (note that sum of two continuous functions over [0,1] is again a

continuous functions over [0,1]), and for any scalar « we have a¢f € L when fel .
Therefore /. is a sub-space of C[0,1].

Let us look at members of C[0,1]\L. Take f e C[0,1] where f(l)=a (say).
Then for any other member g < C[0,1] sharing the value g at 1= 1, . e.. 2(1) = a; we
note that (g~ f) e C[0,1] such that (g - )1 e g()— f(1)=g-a=0; showing that
(g—f)eL ie ge f+L. So these members g plus f all belong to f + L.
Now if e C[0,1] with g (f +L) : | (2.4.1)
So, h—fel '
Le. hand fdiffer at = 1.
ie. hly# f(l)=a

We similarly construct a member (4 + L) of C\L, where

r+Lyn(f+Ll)=¢ (242
or else, we find a member ¢ in both implying
:;v—hei and ¢~ fel
therefore @(1)—A(1)=0 and @(l)- f(1)=0
ie. p)=h1) ~ and p)=fQ)
ie. h(D) = f(1) :
that means he (f_+'f.') , which is not the case by (2.4.1).
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Theorem 2.4.1. Let L be a closed linear sub-space of NL.S X, and let
ix+L|=mf{llx+yll:yel}, for all xe X, then above is a norm function oﬁ the
quotient space (X \.L). Further if X is Banach space, so will be (X' VEY .

Proof : For any member ¥ + L of X\/L, from definition we have

[x+L||=0 forany xc X . :
Nuw assume that || x+L||=0 for somexe X
;er Ir;f{|Lx+yH'.y-E L}=0
As yel if and ||::r'nl}i.r if —yel, we have
Infillx-yll:yel}=0.
Since L is closed, xe [ (distance of x from L is zero);

That means y+ J* = }© = the zero vector of the quotient space X /L .
For verification (N.2) take ¢ any non-zero scalar, Then
|o(x+ L) ||=||ax+L]]

= Inf{llax+y|: ye L}

= Inf {lece+2) )y € L}

=la|mf{llx+(Dyl:yeL}

=) & |H.J.i'+LH , because L is a linear sub-space of X
For triangle inequality (N.3) take x, ye L

Then || (x+8)+(y+ L) ||=][(c+ )+ L] (L is a linear sub-space).
=Infillx+y+u|:uel}

_ =Inf{llx+y+ i+ uel)
shf{llx+ 5l y+5liius L
slf{llx+ & cwe Ly +Iuf |yt 4l ine L}
=Infilix+hl:weli+nf||y+K|:Kel}; Lisa sub-space

=|[x+Lji+[|p+L]l -
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_Thus quotient space X\L is a NLS.
Now suppose X is a Banach space. We show that the quotient space X /L is s0.
Let {x, + L} be a Cauchy sequence in (X/L). So corresponding to each +ve integer
k we find an index NV, such that '

1
[l 2 = X+ 1| <2—k,"whenever m,nz N, (2.4.1)
We define by Induction a subsequence {r,,j_} of {x,,} such that

. 1
HxH* _xﬂ_;-” TL“:_::;&-

Take n =N,, and suppose my,ny,...m have been so defined that
mowhy <.<myoand Nysng (G=1,2,.k),

Let 1, = max{Ny,;, m, +1}. This enables one to’obtain an increasing sequence
{m,} and (*) follows from (2.4.1)

Pu_t P =% Then by induction we define a 3eciucnca {zp} in L such ﬂ]at
Z .E (v, +1) and |2 = g H{.IT?J’ k— L2 s

Choose z, &(y +1), suppose z;,...,z have been 50 chosen to satisfy above
condition. Then y, +L =2z +L and by (2.-4.1} we have |l 2k = Yien 1] ‘?"2‘1}(“. By
definition of norm in (X\L)

e | e
we find 2z, € (Ve + 1) such that 125+ 2k 1525 = Ve +L|1+?.

' Lpd
Then | 25 + Zps1 | = _2,;-,,1 as wanted,

o o
That means 2| Z —Zxn Il is convergent, and hence > (2 ~ 74y is convergent.
i i

But Z{Ek- = zh]] i (zl _zﬁ)"‘fzz 7 E;T_;] 1 ----‘_"(zm i zm+l} =& T &l
k=
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So, {z,,} is convergent: Put lim zp = 2. since 2, € (y, +L)

we have [|[(z+ L)~ (0 + L) =|lz -y + L] ||z -z, ||.

That means Jim{y; +L}=z+L. Thus given Cauchy sequence {x, +L} has a
o ]

convergent subsequence {x, +F}.

Hence {x, +.} is convergent in (X\L). This proves that (X HL) is a Banach
space.

§ 2.5 CONVEX SETS IN NLS :

Let (X || [[) be a NLS, and  be a non-empty subset of X

Definition 2.5.1. C is said to be a convex set if for any real scalar o in 0<aq<l,
and any two members X1, %, € C we have gx, +(1-a)x, is a member of C.

Or, equivalently, for ai.l}f two Lcais o, B with 0za, f=1 a+f=1,
(ax + Bx)eC. .

Or, equivalently, the segment mnsmtmg of members 1 +(1-1)x, (0=¢=<1) isa
part of (. ;

For example, in an Euclidean space like R", cubes, ball. sub-spaces are all
examples of convex sets in R,

Theorem 2.5.1. Intersection of any number of convex sets in a NLS is a convex
sef, but their union may not be so,

Proof : Suppose {C,},., be a family of convex set in NLS (X, I} 1) and put
C=mC,:Let C#¢ and let x,yeC take 0<g <1. Now X, Ve ™ Gy 50 for

aed S TeEA
every @, x and y are members of ', which is convex, thus, (ex+(l-a)yel,
Therefore ax+(l-a)y is a member of every C, and hence is a member of
QEC“.:C . Thus ( is shown to be a convex set in X

Union of two convex sets may not be a convex set. Every triangular region in

Euclidean plane is a convex set but the figure X as a union of two such convex sets
fails to be a convex set.

Theorem 2.5.2. A subset C in a VLS is convex if and only if sC +/C = [s+t}[,
for all +ve scalars s and 1.
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Proof : For all scalars s and f we have

(oY A A ARG < cmeli T s S U i GG (2.5.1)
If C is convex and s,  are +ve scalars we have :
LBl e +L CceC
s+ 541 55 :
e ey L 4 R B LN S s B e bt b LY s {25 2}

Combining (2.5.1) and (2.5, 2) we have -
sC +tt’“ (s+1)C
Eanversel}r, suppose (s+0)C =sC+(C holds for all +ve scalars; If 0 < <1,
take s = and {=1—¢ and then we find oC+(1-a)C < C. So C 15 convex:
Theorem 2.5.3. A ball (e_pen or closed) of a NLS is a convex set.
Frnuf : B(x,,r) be a closed ball in aN;I.S XD .

Let x_].-‘CB(X{_. ¥ix B0 |~ xﬂﬂfr and |1y X || = If_[}::i.g'il, and
= b+ (1~ 1)y, we have

0= iy | = | 6+ (1= D)y = (g + Q- Dx) | = ]| (e =350) + (= D= 3o) |
stllx-x | +Q-D ) y-Yo |t +Q-0r =r.
That shnws e B(x,,r). So, Blxy,r) is shown to be convex. The proof for an

open ball shaﬂ be similar.

Example 2.5.1.Tf (X, || []) is a Banach space and L is a closed sub-space of X,
show that L is a Banach space.

Solution : If /. is a closed sub-space of X, then L becomes a closed set of a
complete metric space X, the metric being induced from the norm || |I. And we know
that every closed sub-space of a complete metric space is a complete metric sub-
space and hence here L is a Banach space. (as a sub-space of X).

§ 2.6 BOUNDED LINEAR OPERATORS OVER A NLS (X, || [}

Let (X, || 1)) and (¥, || ||) be two NLS with same scalar field. (Here, same notation
|| || has been used for norm function; it is to be noted that norm functions in X and ¥
© are, in gencrai different).
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Definition 2.6.1. A function (or mapping or transformation) (function, map,
mapping, transformation are synonyms of the same mathematical object) 7: X — ¥

s called a linear operator if (1) 1'(x, +12} T(n)+T(xy) for any two members x,
and X, in X, and
(2) T(ax))=aT(x) for any scalar & and for any member nelX.

Explanation : For a linear operator T: X - ¥ cundltmn (1) in Definition 2.6.1

is termed as linearity condition which says Image of the sum is equal to sum of the
images. Condition (2) is known as that homogeneity. For example, if X=¥V=R=

~ the space of reals with usual norm (Euclidean norm) and T:R— R is given by
' T{x} ax where xe R and ol is a fixed real (zero or non-zero), we verify that T is
- a linear operator; and we shall presently see that any linear operator : R _y R shall
be of the form T'(x)=ax for some fixed écalar oforall yxeR.

Definition 2.6.2. The operator 7" : X — ¥ def‘ ned i:-g,r I'(x)=0 i ¥ Forall X
is called the zero operator, denoted by 0.

Remark : (a) The zero operator : X'— ¥ is a Linear operator,

(b) The identity operator, / : X — X where J(x) = x for all xe ¥ is a linear
operator.

Theorem 2.6.1. Lf:t T:X - ¥be alinear nperatur If T 1s continuous at one
point of X, then T'is continuous at every other point of X,

Froof : Suppose I is continuous at x, € X ; so given g0, there is a +ve §
such that [|7(x)-T(x,)||<& whenever [ (x)—(x) || <& . Suppose x(#x,) be
am:rt_her point of X. Then if || x~x, [|< &, we write || x—x, =112 — (=2 +x5) |l

Thus [[(x~x +x,)||<d shall give by virtue of continuity of T at x,,

170~ +30)~Tx) I <& |
or, | 7(x)=T(x)+T(x)~T(x;) || <& because I'is linear,
o, [|[T(x)-T(x)]<e. Therefore T"is continuous at x = xy,

Corollary : A linear operator over a NILS X is continuous either everywhere or
nowhere in X.
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Definition 2.6.3. A linear operator 1': X —» ¥ is called bounded if there is a +ve
constant M such that

TG <M || x| for all xe X
1Tl

or equivalently x|l M for all non-zero numbers xe X .

Theorem 2.6.2. Let T: X = T be a linear operator, Then T is continuous if and
only if T is bounded.

Proof : Let T X — ¥ be a continuous linear operator; if possible let 7" be not
bounded. So for every +ve integer n we find a member x, € X such that

[AE Y| -5 | - | PR L (2.6.1)
Now x,, is non-zero vector in X, put ¥ ; i ” “

Hisa] 1 : :
clearly HJ_C"H:E'Hx"”:;_}G as m—>»o0. SO We see i'_?:u“nIQ in X; By

continuity of 7' we have lim Tr,)=T(©)=0 in ¥. (T(Q)=0, because T is linear);

Therefore we have [[7(u,)[|—0 as n—>o R

On the other hand, | T(.H"}Hzﬂr ”wau “

, because T 1s linear

1
=l —=T(x
,Hﬂllxull X

= e

Tx ,.I | T(x) =1 b}r{z-ﬂ])

Now || T(w,)||>1 and (*) are contradictory.
So, we have shown that T: X — ¥ is bounded.

Conversely, suppose linear operator 1: X —F is bounded. Then we find a +ve
- scalar such that :

I TGl =M [fx]l5
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So given e3> 0, there is a +ve & = -2—;% (here), such that

IT(x)|<e whenever || x]|<&

ie. || 7(x)~T(Q)||< & whenever || x—0||<& because T(0) =0 in ¥. That means,
T'is continuous at x =0 in X, and therefore Theorem 2.6.1 says that T is continuous
at every non-zero position of X. The proof is now complete,
Examples of bounded and unbounded linear operators.
- .Example 2.6.1. Consider a transformation T of rotation in Euclidean 2- -Space R
given by T(x,y)— (x,»") where

x'=xcosf 4+ ysiné }
y'=—xsin@+ ycosd

5

Now it is easy to verify that 7. g2 _y p2, under (*) is a linear operator in respect
which rotation takes place around origin (0,0) with axes of co_—c-rdinateé being rotated
through angle @ to give new axes of co-ordinates.

In NLS R with usual norm | (x, )| = 2y y"’*, we see that
IlT(x »IF —|l{x Y)I=x"%+y% = (xcos + ysinf) + (- xsm5+.}=ms€]

=24y =

Thus || T(x, y}|| 1 Cx, )1l and this is true for all pmnts (x, ¥) in R‘2 and we
conclude that T is a bounded linear operator.

Example 2.6.2. Consider the Banach space C[0,1,] of all real-valued continuous
functions over the closed interval [0,1] with respect to sup norm :

| /1= sup [ fQ@)]; f €Cl0,1]
a=zr=l

Let K(s.7) be a real-valued continuous function over the square
{0=s<f; 011},
Now define T :C[0,1] — C[0,1] by the rule : let T(f)=F

where F(s)= [, k(s,0)f ()dt; as f Cl0,1].
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It is a routine exercise to check that F¥ is continuous over [0,1] and T'is a linear
operator.

I : 1 _
Now, \T(f)||=[IF || = sup | F(s)|= sup Ij'k(s,r}f(r}dil
; D=zl 0232l [

< sup j | k(s, Ol f@ldi <M[| ()| dt where M= sup |Kk(s,0)];
D=ssly Nzl (=r=)

<M. sup | f(D)] j di=M.|| f . This is true for every member f & C[0,1].
=r=l

Therefore, T is shown to be bounded.

Example 2.6.3. Let '™1[0,1,] denote the class of real-valued continuous functions
- that are continuously -differentiable over [0,1]. Then Cm[{} 1] is a sub-space of
([0,1] which is Banach space with sup norm. Cnnmdcr the Differential operator
D:c"[0,11-> C[0,1] when D(f)=¢; feCV[0,1] and d!f(r} @) in 0<r<l.

We can easily verify that ) is a linear.operator, 1:~ra.3sentl1t,F we see that D is not
bounded.

. Let us take £, eCY[0,1] where f,(z)=sinnzt in 0<¢<]. Then we have

Df, = ¢, where @;;(‘F%@inﬂﬂ}wﬂﬂsnﬂ in. <ty

Therefore || £, 1= sup |sinazi|=1 444
§ D=zl

1D =119, || = sup | nrcosnmt |= nz
=<l

Here 1“(""!'}“:@_}.:0 ﬂS.H.—}DO

3724 I

That means D can not be bc)unded

Definition 2.6.4. Let T: X — ¥ be a bounded (or equivalenly, currtmucus)
linear operator: Then the norm of T, denoted by || T || is defined as

1Tl = Iof M > 0:|| T() || <M || x|| for all xe X}
(A set of +ve reals has always Jnf. value).
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Theorem 2.6.3. Let 7' X —-¥ be a bounded linear operator. Then
@) (TEH=IT x|l for all xe X} '

y I T )| =supi|| T
(b) _|| I ||SJ:|-|15E;{“ C11eS

© ITl=supti 7@}

@ [IT)|=su p{” H‘J”}

Proof : (a) From definition of {jperamr norm we see that for any +ve & we have

IZGI= TN +&) x| forall xe ).

Taking £ — 0, we have || T(x)||<||T[|]]x|]
B If ||x]|sl,xe X, we have || T(x)||<|| T |||l x| ]| T]

Therefore ﬂfg” Tl =T N %

From Definition of operator norm || T'||, given any +ve €, we find x_ € X such

that || TG ) || > AT 1 ~&) 1 x ]I
X :
Take ¥, =m we see |[u,||=1 such that

1T () 11= IIT(xg)|t>|| T AT =)l % =TI~

le,, I
As  |lu, ||=1, this gives sup [|T(x)||=|| T(us)[lbu".-"||—a_ﬁs £>0 is
Ixil=t _
| arbitrary we produce sup || T(x)![::“ Al ' {2)
: ([l =L
From (1) and (2) we have (b), namely, sup || T(x)||=|IT||
= [ldi=t

(c) - the proof shall be like that of (b).
(d) we have [[T()|[< (T [|]| x|l for all xe X .
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o, “ﬁ{j{”ﬂml for xe X with x£0.

Since r.h.s does not depend on non-zero xe X, We have

17N 7y

= ®
Again given a +ve € (0 <& 4| T 1) we find a membﬂr x. e X such that

17G = AT I =&) 1 x, |l; clearly x, #0.

e
Thus ng ” }H H
T i
Therefore SUP LT, L2 >\ Tll-¢
Nxell — llx: 0
Now taking £ —>ﬂ+ we find
Lreall
STl T BN - @

Combining (3) and (4) we have bu_[ll ”{ ) =|IT].

EXERCISE A

Short answer type questions :
1. Ina linear space X if x € X show-that —(—x) = x.

2. 1f a finite set of vectors in a linear space contains the zero vector show that it is
a linearly dependent set.

3. In Euclidean 2—space R describe g,eomctncalj,r open ball centred at (0,0) with
' tadius = 1 in respect of (a) qul_.,fxl +x,° () l|xllp= ERESES and

(o) || xlly= max{| x |,| ¥ [} where x=(x.%)e R

4 Obtain a condition such that function suit and sin A¢ are linearly independent in
the space C[0,2m]. 5
5 Construct a basis of Euclidean 3-space R’ containing (1,0,0) and (1,1,0).
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EXERCISE B

Broad asnwer type questions

1.

If C[a,b] is the linear space of all real-valued continuous ﬁjﬁctioﬁs over the
closed interval [a,b], show that Cla,b] is a Normed Linear space with respect to

=2
7= [ | /1dt, feCla,b]. Bxamine if Cla 5] is 2 Banach space with this norm.
[ ; :

Ina NLS X verify that for a fixed . member g ¥, the function fi X=X

givenby f(x)=x+a; xe Y isa homeomorphism. Hence deduce that translate
of an open set'in X is an open set.

Examine if the sub-space p[0,1] of all real polynomials over the closed interval
[0,1] is a closed sub-space of the Banach space (0,1] with sup norm.

Prove that in a NLS the closure of the open unit ball is the closed unit ball.
Let (X, [[ [[) and (¥, || [[) be two NLS over the same scalars and T X — ¥ be

linear operator that sends a convergent sequence in X to a bounded sequence in
Y. Prove that T is a bounded linear operator,

- Let T': C[0,1] — itself, where ([0,1] is the Banach space of all real-valued

continuous functions over the closed unit interval with sup norm such that
I(x) = y where '

s ;
J’{IJ=IJC(H)64’H; xeC[0,1] and 0<f<]
i)

. Find the range of 7, and obtain 7! “(range T) — C[0,1].

Examine if -1 is linear and bounded.
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UNIT 3

(Contents : Every Finite Dimensional NLS is a Banach space, Equivalent norms,
Riesz Lemma, Finite Dimensionality of NS by compact unit ball, Linear operators
over finite Dimensional NLY and matrix representation; Isomorphism, Boundedness
of lingar operators over finit Dimensional NLT space Bd£(X,Y) of bounded Imcar'
operators, and its mmpieteness)

§ 3.1 FINITE DIMENSIONAL NLS

Theorem 3.1.1. Bvery finite dimensional NLS is a Banach space. To prove this
Theorem we need a Lemma.

Lemma 3.1.1. Let (x;, x5, ..., x,,) be a set of linearly mdependem vectors in a
NLS (X, || then there is a +ve l?: such that

[|atx1+{x2x2 +otax, |2 Bl | +ley |+ o+ e, ) for every set DfSGﬂId!’S

ay, oy oy Oy

H - 3
Proof : Put §= ZI &y |. Without loss of generality we take § = 0. -
i1 :

Then above inequality is changed into

|| -ﬁlxl 7 ﬁixi! Bt 5 -ﬁi;xn ” 2 }'3: Whﬁl'e ﬁi = Fi . (*)

and YIAI=1.

i=l- :
3 ! : i
If suffices to establish (*) for any set of scalars B, 5,,..., 5, with > | §,|=1.
: : i=1

We apply method of contradiction. Suppose there is a sequence {y } with

= Bt Byt BP0 SIB I om0 .
=]

such that || y,, [|>0 as m—» e

3 H
) (1)
AT E R =]
MNow " b
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Hence for a fixed / the sequence {g™}={g® g® .} is botiided. S
Bolzano-Weirstrass Theorem says that {§,"?} has a sub- PSspisiics that converges to
(say) f3,. _

Let {3} denote the corresponding subsequence of {y,,}. By the s:arne argument
Vit shall give a sub-sequence, say {¥,,,} for which the corresponding subsequence
of scalars {8,""7} converges to S, (say). We continue this process. At nth stage we
produce a subsequence {¥, ) = (V1 Vu2-} of {y,,} whose term

o
Yam = Zﬁiim}xi 3 Zl 5 i |=1
i=1

i=l

such that Jf_[ﬁu 5,-{"” 5 B, Hence we see

lim y,,, Zﬁ:"-’: =¥ (say) when Z| B; 1—1 That means all 3, ’s are not

zero. Since X, X,,.., X, are lineatly independent it follows that y=0.

Now lim .. =y gives

P e e ]

lim [}y [[=1121].

Since {¥,mt is a sub-sequence of {y. } and ||», [|—=0 as 50, So

| ¥ ll—0 as m o0 and so || y||=0 giving y=0, a contradiction. Therefore
Lemma is proved.

Proof of Theorem 3.1.1. Suppose {y,} be a Cauchy sequence in a finite

dimensional NLS (X, || [[). Let Dim(X) = n, and (e,, ‘5‘2, ...y €,) forms a basis in X. So
edch y,, has a unique representation, :
Yo =04 e+, + ...+, Me,
Give a +ve £ as {y,,} is Cauchy, we find an index N' such that

Y=y, ll<e for mrzN.

H :
Now >l =3 1= 20 -, |
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n
=5 cz,-{“"'_’ ~a | by Lemma 3.1.1
i=]

whenever m, r > N . Therefore

; :
lmi{m} _{xftr} I£ZI a;{ m | ":“E for mr>N
: =
Therefore, each of the # sequences

&} (1 =1,2,...,n) becomes a Cauchy sequence of scalars.(reaisfmmpiex),-and
by Cauchy’s General Principle of convergence becomes a convergent sequence with,
5aY, '

{n)

3 o '
lim a,""" =« ) (say),i=12, ., »

H—Fc0

Put y=0y'V% +a, "% +..+2,%,; 50 ye X,

n’

Further, lim o™ =” for j = 1,2, oo, 1 BIVES,

; " b :
i 0 7 0
17w =2 1= @™ =2 12 Y 1™ - |l |5 0 a5 m— oo
i=1 BT

i=l
ie. ;l;i—'}l Ym=y€X . So given Cauchy sequence {y,,} in X is convergent
m X; and (X, || ||) is Banach space.

Theorem 3.2.1. Any two norms in a finite dimensional NLS X are equivalent, -

Proof : Let Dim'(X) = » and (e, e,, ..., ¢,) form a basis fan If xe X we
write x = Oe; + 06, + ..+ ae, i.quuvsalj,r
Applying Lemma 3.1.1 we find a +ve £ such that

lixlh 2 B(lay | +|ag | +.+]a, )

If #=max |l |l,; Then we have

llxlly < ZrafineuﬂfuZJa;l{ (E308

=]

or, B llx|l, <llxl;, the other half of desired. inequality comes by
mterchanging norms || ||; and || [|,. The proof is now complete.
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Theorem 3.1.3. A NLS (X, || ||) s finite Dimensional if and only if the closed unit
ball (centred at Q) is compact.

To prove this theorem we need support of another result popularly known as
Riesz Lemma.

Lemma 3.1.2 (Riesz Lemma). Let L (# X} be a ciosed_sub—s;aace'u.f a NLS
(X 1|ID. Given a tve € (0 <& <« 1) there is a member J’E(‘f) with || ¥||=1 such
that || y—x||>1-¢ forall xe [ . |

- ;
Pmuf Take Yo E( ) and put d =dist(y,,L)

' =fﬂ{||yn—x||,

- ince L is closed and y, is outside L, we have d > 0. Given a +ve & choose .
7= 0 such that :

7
d+

=& |
- So we find a member Xo € L. such that
d <]l yo - x ||-{d_+g?

Take Y ﬂ”{}’u #X); then l¥]|=1, and we have

H.v

yn =Xy +|| ¥y — % || ¥ Since y,; is outside L, we ﬁndy also OutSIde re Y E[i)

£ : Yo — Xy
i —=X|= S
If ye I, we have ||y —x|| TR “
L ]IJ"U —x v % l]= —“*” Yo=*'|| (sa )
ll yo = o |l e —xll 4

where x"=xy+ || ¥y — % || x; clearly x’ < I. because x,,xe L.

Filro

A SR L
”_d+:q ~d+n g

. 3 1 =
Therefore, ||y =xI|> Z==1l%

The proof is now complete. .
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Proof of Theorem 3.1.3. First suppose that closed unit ball
B0)={xeX:|x||s1} inaNLS (X |||} is compact and hence is sequentially
compact. We show that Dim (X) < 0.

Suppose no. -take x, e X with ||x ||=1 and L, as the sub-space spanned by
'x,l{:& 0). Then L, is a closed sub-space of X without being equal to .X. So we apply

Riesz Lemma (Lemma 3.1.2) when we take €= Then we find %, < (X\7;) with

% il i 1
| %, ||=1 and |Ex1—x2||}§,

: Take I, as the sub-space spanned by x, and x,. By the argument same as above
we find L, as a proper closed sub-space of X and attracts Riesz Lemma. Thus there

: S P e 1
s X3 e (X L) with [[x;]|=1 and ||%; - x |]‘-‘-’§, | - x, |E}§-
We continue this process to obtain a sequence {x,} with |[x||=1ie x, € B)(0)

such that ||, —X, []::- for n#m. That means {x,} does not adlmt if any

convergent suhsequence ca contradlctmn that B,. (0) is sequentially compact. Hence
we have shown that Dim(X) <. j

C(m';rerse]_}'.let (X, | |) be finite dimensional. Then it is a well known property
~ that a subset'in X is norm-compact if and only if that subset is bounded and closed.

Here the closed unit ball B (0) is buundad and hence it must be compact. The
proof is now complete, ;

- §3.2 LI_NEAR {}PERATGRS OVER FINITE DIMENSIONAL SPACES :

Let R” denote the Euclidean n-space. Then an mxn real matrix

y & .. Dy

91 92 - % |defines a Linear operator T:R” —» R™ where T(x)=J;

Do auﬁ . S
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x=(£,&,....&,) and ¥ = (h. 7., 7,) such that

H ;
Y= i=12,...m

J=1 :
Verification is an easy exercise and is left out.

Conversely, given a linear operator 7: R” — R . We show that it is represented

by an (mxn) real matrix. Let us take (e, e,,...,e,) as a basis in R” where

ei-ﬂ(“—' —). i=12,., n And let /=000, f=(0100,.0),

m places

Let T'(e;)=a; e R"”
' say ittt Sy (s2Y) (=12, ., 1)
In general, if x=(§.&,,..£,)e K" andif T(x)=yeR"

we have A+t A fn=) and

Y= T{i f;"fj} = iﬁfﬁ'("f} = igﬁ‘i" |
. = = s

Or, i?rfﬁ=i[iaﬁ f],ﬁ gives ?:r.-=ZIor5,-§-;:‘=|,_g, ey M,
: | 4 £

Therefore, T is represented by the matrix ((ﬂf _,-,-)

B
Remark : Given a linear operator 7: g" — R™, there is an (mx#) matrix to
represent T Entries (reals) in this matrix depend upon the choice of basis in underlying
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spaces. If basis changes co-efficients entering representative matrix change; However
order of the matrix does not change.

Example 3.2.1. Let ,[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree 3. Let D: p,[0,1] = p,[0,1] be the differential
operator. Show that D is a linear operator and obtain a representative matrix for D.

Solution : Here [0,1] {and similarly 0,[0,1]) 1s a real linear space with
Dim 0;[0,1]1 =4 (Dim( p,[0,1]=3). Let us take (pg, Py, Pa, P2) 85 & basis for p;[0,1] -
where po()=1, p)=1, p,()=¢ and py()=¢ in 0<¢<l.

Then we have D(py)=0, D(p)=1, D(p,)=2t and D(p;)= 3% and we -
write : . '
0=0p;+0p +0p,
1 =1p, +0p ;rﬁpz
2t = Opy +2p, +0py
and 3" = Opy +0p +3p,

And therefore répresenfative matrix ((ﬂ,;,-)]s .4 for D is given by

01 e D
g B 2. 0
. 90 3

3xd

Remark : Representative matrix for linear operator changes if basis is changed.

Example 3.2.2. Let 0,[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3.

Let T: p3[0,1] = p5[0,1] be a lincar operator given by
_ T(ay +alx.+ ax” +asx’) = ay + r.ﬁ (x+1)+ay(x +1)? .+q3{;'r+1}3 for every
member a, +ax+ax>+a;x° & p3[0,1]; obtain representative matrix for 7' relative
to basis (i) (1, x, x%, »°) and (i) (1, 1+ x, 14 x*, 14 x7) of p:[0.1] |
Solution : Here Dim 2,[0,1] = 4; So required matrix for linear operator T is of
order 4 % 4; where T : p5[0,1] = 05[0,1].
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Now () (1, x, x*, x') forms a basis for p,[0,1]. .
Now we have,
=1, M)=&+1), )= {xkl) and 7(x)* “‘(x+i} So we

write with respect to basis above

=1 =1.1+0x+0x*+0x°

M) =1+x = L1+1lx+0x+0x

T =(x+1P = 1L14+2x+12+0%°

) =@x+1)Y = 1.1+3x+3° +1%
Therefore representative matrix for T in this case shall be

Hl

[ N = S o
o S e .J—- —
e
S s S L T

(ii) Here basis is (1, 1 +x,1+x2,1 + xj’} of p[0,1]
We have 7(1) =1, T(1+x) =1+ (1 + ¥), 71+ =1 + (1+x)* and
T+ = 1 + (1+x)°
Therefore relative to basis (1,1+x,1+ xz, 1+ x°) we write
) =1 =11+ 0(l+x) + 01+t + 0.(1+)
T{I4x) =24¢ =11 + L(1+x) + 0(l+2) + 0.(1+H
[lk) = 1+it2ei® =11 + 2004 + 101°) + 0.0+
T(1+xY) = 141436370 = =51 + 3.(1+x) + 3.(002) + 1.1+
Therefore representative matrix for T in this case shall be '

Lf =8

i

bkl o2 23
D 6. 13
g o @l

- Note : Basis taken and treated above should be termed as ordered basis. In
ordered basis order of arrangement of vectors is basis in important. For example, in
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Euclidean 3-space R we know (e), €5, €5) is a basis in R, where &= =(1,0. 0), e, =
(0,1,0) and e; = (0,0,1). Then each of (e, e,, &;), (e, €, €;) and {e[, €, 92} is an
ordered basis and they are different ordered basis for R,

§ 3.2(A) ISOMORPHIC LINEAR SPACES :

Definition 3.2.1. Two linear spaces X and Y over the same scalars are said to be
isomorphic (or, linearly isomorphic) if there is a linear operator 7" ; X — ¥ that is
1-1 {injective) and onto (surjective). The operator 7' is called an Isomorphism.

Theorem 3.2.1. Linear isomorphism between linear spaces over same scalars
on the class I”, of all such spaces is an equivalence relation.

Proof : If X € I', the identity operator / : X — X is an isomorphism. So the
binary relation of being isomorphic is reflexive; let X, ¥ € /~ such that X is isomorphic

to ¥ with ¢ : X — ¥ as an isomorphism; Then ™' - ¥ — X is also an isomorphism.
Thus ¥ is isomorphic to X. Hence relation of isomorphism is symmetric. Finally, if

f:X—> Yand g: ¥ — X are isomorphism, then (g. f) : X — Z is also an isomorphism,
Therefore, the relation of isomorphism is transitive. Thus it is an equivalence relation,

Theorem 3.2.2. Every rea,[ linear space X with dim(X) = » is isomorphic to the
Euclidean n-space 1.

Proof : Let (u;, #,,...., ) form a basis in X So if u € X we write
=g+ Suy +.+E uniﬁuely_

Define an operator T: X -» R” by the rule :

T() = (&, &, E,) € R where u=Emy +Eu, +.. + &, e X

H

Then it is easﬂy verified that T is a linear operator. Furhter, if ¥ = Zé.! " and
; =

H

v= Z?j’;?-‘; with u % v are members of X, then we have
i=1

{é'l:- §2s s é:r.l] # l:?:"i:- HZ:----! Hn} or T{“) 7 T{ﬂ'},
thus 7'is 1-1. Finally, for (¢, a,,.., @, )e R"

5 5 ey e
We have fo:—”f €X' such that T[Zﬂ-’:“;) =@, @y, y) |
i=1 i=1 :
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So T'is onto. Therefere Xis lsumc-rphic to R,
Notation : If two linear space X and Y are isomorphic we use the syrnbul ¥Or:
Corollary : Any two real linear spaces of same finite dimension are Isomnrphm

Because if X and ¥ are finite dimensional real linear spaces with Dim(X) = Dim(}),
we apply Theorem 3.2.2. to say y R": and hence y Oy . 5

Theorem 3.2.3. Every linear operator over a finite dimensional NLS is bounded
(hence continuous).

Proof : Let (X, || ) and (¥, || ||) be two NLS over same scalars and D1m(X) <,
say, being equal to », and let (), e, ..., ¢,) be a basis for X. Then each member .
¥ € X has a unique representative as x = &¢, +&,e, +....+ &8, where £ ’s are scalars.
Let us define a norm || x| by the formula :

|Lx||’_=_‘",;sél.

It is an easy task to check that || x| is indeed a norm in X. Since X is finite
dimensional, we know that any two norms in X are equivalent.
Therefore there is a +ve M satisfying

x|'<M| x|l forall xeX

" -
ie. & 1sM||x]l

i=]

” .
If T: X — ¥ isa linear operator and x = ije;. e X, we have

i=1

T (el =] T{Zéﬁ] 1—J|Z§f ()l

£Zl~§ 17

i=l n ; :
< max(| T(e) 1 Tl - 1 T ) D M [ x

(from (*)) =L|x|l, (say). :
This being true for all x € X, we conclude that T is bounded.
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§ 3.3 SPACE OF ALL BOUNDED LINEAR OPERATORS Bd.Z(X,Y)

Let (X || [[) and (F || ||) be two NLS with same scalar field. Then zero- operator
0 : X — ¥ where O(x)=0€Y as xe X is a bounded linear operator. Therefore

Bd£(X,Y)=¢. It is aroutine exercise to check that Bd.Z(X,Y) becomes a linear
space with respect to addition and scalar multiplication as given by

(T, + 1) x) =T (x)+T5(x) forall xe ¥ ; and 7,,7, € Bd£(X,¥) and
(AT))(x) = ALi(x) for all xe ¥ and for all scalars A and T; € Bd£(X,Y)

Theorem 3.3.1. Bd £ (X }) is a Normed Linear space, and it is a Banach space
when Y is so.

Proof : Let us take the norm in linear space Bd.# fX 1) as operator norm ||71]
as T e BdL(X,Y). We verify that all norm axioms are satisfied here.

~ For (N.1) it is obvious that ||T||20 always for any member T & Bd.£(X,Y);
zero operator (J has the norm || O||=0

Suppose ||T||=0 ie.. sl.llp IT(x)]|=0. Soif || x| <1, we have .
: li|s1 L

I TxE|£s:1,|p ITCO =0 2ives TG IS0 i onvrorinsiamsasianss (1
i<
If || x|| = 1, then put .‘}—‘=ﬁ ;Thus |1y|[z“ﬁ“ =1; so as got above

Hf{}’)li-ﬁ or 0=|| T(y)H—H “ HT(x][] giving

1 7(x) |}= ..... e @)

So (1) and (2) say that T(x)=0 forall xc X ie T equals to the zero operator.
For (N.2) take A to be any scalar.

Then || AT =]ﬁ;§§| [ (AT)(x) |
- =sup | AT() || = sup{| A ||| T(x) I} |
llfi=t lixfi=1
=[Alsup [ TCH[=[ A1 T
x| =1
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So (MN.2.) 15 satistied.
For triangle inequality, if T}, T, are members of Bd.Z(X,Y} we have for
xe X, 1L+ 1) =R+ BN T+ ) |

SN NI M x =171 +173 )11 x]); this is true for all xe x,
Therefore || T; + 7, [ || 7; || + ]| 73 ||, and that is the triangle inequality,

Therefore Bd.£(X,Y) is a Normed Linear space (NLS) with respect to operator
norm. -

Now suppose that ¥ is a Banach space. We show that gdf[ X1 is s0. Take -
{7} as a Cauchy sequence in Bd£(X.T) ie ||T, ~T ]| =0, as n.m =0

if xe X, we have |Ij::(x)_?:u{x)”:” (?;r _T;u}(x]” :

<L, -1, Ml x>0 as n,m —>00  That means, {7, (x)} is a Cauchy sequence
in (¥, || ||} which is complete.

Let lmT,(x)=ye¥
Let us define 7': X — ¥ by the rule
I'(x)=lim I,(x) as xe X .

Now it is easy to see that T is a linear operator.

Furthet, |17, 11=11%, || 2017, =7, >0 as nm >0

That means {||7, ||} is a sequence of non-negative reals and this is Cauchy
sequence and therefore is bounded. So we find a +ve K satisfying

|7, K for all n
So, IT@1I=Il lim 7,(x) = lim |2, ()|
< lim | Tl x| S K | %]| by above inequality:

This being true for all xe X | we find 7: X — ¥ as a bounded linear operator
ie. TeBdL(X,Y). ;
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II © Tinally, from Cauchyness of {T,}, given a Ve &, we have

; | e U || <& for nzny and p=12,......

Take [[x[| <1 in X, S0 17, () T (T, =T

Sl Ty~ NN STy =T < For Mg

Let us pass on limit as p—> 9, then we have
|7 () =T, (%) | =& whenever H=Hg

This is the case whenever || x]| £ 1; taking sup we have

sup || T(x)— T.(x)|| < & whenever 7 =

[l <t
Now 7 =Ty | = sup T =T
= sup | 1) -1,
fli=t

< ¢ whenever 127

So we obtain lim T,=TeBd £(X.,Y) in operatot norm.

The proof is now complete.

Example 3.3.1. Show Bd £(R",R") is finite dimensional with dimension 7.

Solution : By matrix representation theorem we know that every member
T e BdL(R",R") has a representative matrix of order a1 X 1 (f.e. & square matrix-of
size m). With respect to a fixed basis in B, we also see that Bd£(R",R") and the

0 e - . - £ " 0 5 2
linear Space M,y is finite dimensional with Dim (a1,,) =1"-

Therefore Dim{Ba L(R",R")= n

ANLS (X 111D s aIEanach space if and only if fre X f[xll=1

Example 3.3.2.
is complete.

Solution : Suppose (X, || |) is a Ban
ot of X, and hence is complete.

_a_ch space; then the given set {x € X:llxli= 1}

is a closed subs
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Conversely, suppose § = {xe X :[|x ||=1} is complete. Now let {x,,} be a Cauchy
sequence in X, so ||x, —x,, || >0 as n,m— o

-, |[|~=_:,J|—x,, ~ X >0 as nm — 0. Thus scalar sequence
{lx, I} is Cauchy, and by Cauchy General Principle of convergence _{|i x, 1} is
convergent; put im [1x, |=a@ 1f o = 0 we see {x )to be convergent in X and we
have finished. Or else o > 0. Without loss of generé.lit}r we assume that o

Therefore [ II x,

=1.Letus
'xu . i S i - et

put Yu :m making ||y, [|=1 ie y, eS8 . If possible, let {¥,1be not Cauchy.
[ ! T

Then there is a +ve g, (say) and there are indices m(2 k), m (= k) such that

”}"”* _ym.,r ”254}', k=1, B e

Xn, A, Xy ! Ko
or, & = S| 3 et ot 0| ESERC | ) L
P T g T T, T e e e (B
=l %, f|r1—‘l— +{ %, |l -1 50 as k- arriving at
M T T | ,

contradiction that &, is +ve. Therefore we conclude that {Vn}is Cauchy in § by

completeness of which let ;%I—ﬂ Yn=Yo€S. That is Al_ﬂ X= jx_ﬂ I X, | Vo=

Hence {x,} is convergent in X and X is shown as a Banach space.

EXERCISE A

Short answer type questions

L. Let X'be the linear space spanned by f and g where Sfx) = sinx and g(x) = cosx.

For any real 6, let fi(x) = sin(x+8) and g,(x) = cos(x+8). Show that J, and gare
members of X, and they are linearly independent.

2. LetA and B be two subsets of a NLS X and let 4+ B ={a+b:ac 4dand beR).

Show that if 4 or B is open then 4 + B is open.

: ; i - 1 -1
3. Let m,,, be the linear space of all real 2 x 2 matrics and F = [D 5 ] :
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If T My, — My, 18 taken as T(A) = BA for Ay, show that 7'is-a linear
operator. | '

If C is a convex subset of a NLS X and x; € X, and ais a non-zero scalar, show
that x; + C and aC are convex sets. '

Show that T': Cla,b] — R (real space with usual norm) defined by the rule

ren=["y@d;  feCiabl. Eiuiin
‘Show that T is a bounded linear operator.
EXERCISE B

Let A and B be two subsets of a NLS X, and let A+B={a+b acdandbe B}:
"If A and B are compact, show that 4 + B is compact. TN
Let M be a closed linear sub-space of a NLS (X, || ), and XM be the quotient
space, and 7': X — X/M where T(x)=x+M for xe X .

Show that T is a bounded linear operator with || T'||<1.

Show that the space of all real polynamiﬁls of degree < # is the closed interval
[a,5] is isomorphic to the Buclidean (1+1)-space i :

'_ Let (X, || [) and (X, || [[) be NLS over same scalars and £ T : X — ¥ be bounded
"~ linear operators such that F and T agree over a dense set in X, show that F= 1.

If Xis a finite Dimensional NLS, and ¥ is a proper sub-space of X, then show
that there is a member xe X with ||x||=1. satisfying dist(x,¥) = 1.
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UNIT 4 -

(Contents = Bounded Linear functionals, sub-linear functionals, Hahn-Banach
Theorem; Its applications, Conjugate spaces of a VLS, Canonical mapping, Embedding
of a NS into its second conjugate space under a linear 1sometry, reflexive Banach
space; Open mapping theorem, Closed Graph Theorem.).

§ 4.1 LINEAR FUNCTIONALS :

Let (X, || [) be a NLS over reals/complex numbers,

Definition 4.1.1. A Scalar-valued Linear operator f over X is called a Linear
functional.

For example if X = Banach space [0,1] with sup norm, then f: X — Reals

i ) 1 &
(with usual norm) is a linear functional when Fln)= J'ﬂ x(f)dt; xeC[0,1].

Explanation : Linear functionals are special kind of Linear operators, and thus
enjoy all the propertics of Linear operators like sending dependent set of the domain
into a similar such elements in range.

Let us consider the collection of all continuous (bounded) linear functionals
over X'i.e. we have the space Bd.£(X, R) whenever X is a real NLS. We have seen
that the space Bd.£(X, R)is always a NLS with operator norm || £|]; /'being a member
of BAL(X,R). We have also seen that the NLS Bd£(X,R) is a Banach space _
because R is so. ' ' : '

Definition 4.1.2. The space Bd.£(X ,R) denoted by X* is called first mnjugate.
space (Dual space) of X.

-~ Thus first conjugate space or s-impiy conjugate space X* of any NLS (X, ) is
always a Banach space irrespective of X being complete or not,

By a similar construction one can produce Bd £(X* R)= the space of all
bounded linear functionals over X*: this Banach space X% = (X*)* ig called second
conjugate (Dual) space of X' and so on, - %

 Most of theory of conjugate spaces rests on one single theorem, known as famous
Hahn-Banach Theorem that asserts that any continuous linear functional on a linear
subspace of X can be extended to a continuous linear functional over X by keeping
the norm-value of the functional unchanged. The proof of Hahn-Banach Theorem is
lengthy but necessarily indispensable item in Functional Analysis.
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Before we take up Hahn-Banach Theorem in setting of a NLS we pmcecd as
under :

Definition 4.1.2. Let X be a real linear space. Then p : X — Reals satniymg (i)

plx+y) S plx) + p(y) forallx, ye X and (i) plox) = ap(x) for all =0, x & X is
called a sub-linear functional,

Note : Condition (i) above is known as condition of sub- dcfdltwlt}f and mnditmn
(it} above is called positive homogeneity.

1t is not difficult to see that norm ﬁmﬂtmn inaNLS Xis a %ub linear functional
over X, '

Theorem 4.1.1. (Hahn-Banach Theorem in a linear space)

Let M be a subspace of a real linear space X, and p is a sub-linear functional
over X and f is a linear functional on M such that J0) < plx) for all x € M.

Then there is a linear functional I over X which is an extension of S (over M)
such that

Fx)<plx) forallxe X _
The proof of this Theorem rests upon following Lemma,
- Lemma 4.1.1. Suppose M is a subspace (# X) of a real linear space X and

g€ (X\M). Let N be the subspace spanned by M and %} fe. N=[MUfx}];
suppose f M — R is a Linear functional such that
Ax) € p(x) for all x € M, where P X — Ris a sub-linear functional (over X).
Then f can be extended to a linear functional ¥ defined on N such that
' Flx) s p(x) forxe N

Proof : Since fx) £,p(x) over M, we have for y,, ¥, € M. N
FOr=22)=F )= (72) < p( = 32) = PO+ = 3~ 3o) )
=P X))+ pl=y, —x)
of, =pl=y; = %)= f(R) < POHY +50) = FOA) wvivorvnmsronrin o st 1)
(separatiun ot terms involving y, and y,)

Now fix 4 and allow y, to change over M. From (1) we see that the set of reals
(=PCs = %)~ T (1)} possesses sup.

Put = sup{ p{ _yz Xp) = f(%;)}; and in a similar argument, put

ekl
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b= }]1;}}{:“%_ +x5)— f())}. The relation (1) says, a<p.

Take .a, real ¢; between g and b fe. @a=¢y 2h

Thereforc as ye M we have _
—p(=y—x)= fO = ¢y = ply+x)— () e

Since x, & M , we write X € N as X'= ) +aX,, and this representation is unique,

Consider F: N — R defined by the mle :

Fly+axy)= 1y +ag, aé (y+ax;)eN {jﬂEM_&  a scalar). Tt is easy to
check that F is a linear functional over & such that F(y) = fiy) as yeM N,

In other words F is an extension of f from M to N. We verify further that

F(x) = p(x) for all x € N. To achieve this we are to consider following two
cases : When x € N, we have x = y + ax,, where tt'is a scalar,

Case I. When o > 0; we consider RH.S. of inequality (2) with y replaﬁed by

Bl P lould
a,thlsyves cuﬂp{a+xu] f(rxj'

Multiplying throughout by o and using the fact that p is sub-linear we have.
fO)+acy £ ply+axy)
of, F(x)< p(x)

‘Case TI, When o < 0, we use LHS. of inequality (2) with y replaced by %.
This gives rise to

A (e
or, "P[g?‘xﬂjiﬂn +.f'[£).

Multiplying throughout by o and reversing the sign we have,

(—rx}p[—i’;—xﬂ]zmﬂ +1)
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Since ~ o >0, we have p(y+axy) zac, + ()
.- o, p(x) = F(x)
- or, I (xj < p(x) !
- When ot = E} we réadily see F(y)= f(y)- The proof of Lemma is now complete.

Proof of Theﬂrem 4.1.1. To prove the theorem we invite partial ordering i ina
. set and use Zorn’s Lemma which says that in a partially ordered set if every chain
_has an upper bound, then there is a maximal member in the set.

Here let I" denote the collection of all linear Runctionals £ f} such that each f
is an extension of f such that f (x) < p(x) over domain of f D*

Lemma 4.1.1 tells us that I" is ncrn~r:mpty Let us partially order I" as for ;‘i fz el
we say, f<f

if’ f, is an extension of j with Dy 5Dy, and f, = f, over Dy,

* We may verify that & is a partial _Grder relation in I where we show that every
chain (totally ordered subset) in I" has an upper bound in . To that goal, let 7= { fa}
be a totally: mrdered subset of I'. We find some member #<T to act as an upper
bound for #

Construct f whose domain = VD | If xe LD, fhisrs s # mether & ‘such
that *€ Dy and let f(x)= f(x)

By routine work we verify that /D isa sl space nf X; taking ¥, ye D,
we find two indices o and @, such that xe D, and V& D;

5 f?‘] ‘”‘I
Since 7 is totally ordered either D =0 . ot H < D; £, » and in cither of

the cases we have
(x+y)e 2Dy and similarly @%€ D} and WD} s a sub-space of X,
Finally we show f is well-defined,

Suppose xe D i and xe D h ;-by definition
a i

J =30 and FO)=f300
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By total ordering of 7 either }a is an extension of }ﬁ of vice-versa,
So fa (x)= _f'ﬁ.(x) . Thus we have
f(x)< p(x) for x€ D} and for any member £, of 7 we have Faf . So
} eI is an upper bound of = So we apply Zorn’s Lemima to obtain a maximal
member (say) I7 in I". And F is the desired extension of f as a linear functional with
F(x)< p(x) for all ye X ; that ;iomain of F equals to X follows maximality of F:

Otherwise by argument as above one can have an extension of F to some other
functional—a contradiction of maximality of /' The proof of theorem is now complete.

Remark : Theorem 4.1.1 is also true for complex spaces, for which one has to
furnish proof’ :

Theorem 4.1.2. (l-lahn-f[ian.ach ’L‘ﬁeereun in a NLS).

Suppose f is a bounded linear functional on a sub-space M of NLS X. There is a
bounded linear functional F which is an extension of f from M to X having the same
norm as that of £ - '

Proof : If yc Ay we have | f{x)| =l LIl x|l
Define p: X — R by the rule : :

plxy=(lf x| for xe X..
Then we verify that p is a sub-linear functional over X
Such that f(x)< p(x) for xeM.

Now apply Theorem 4.1.1 (Hahn-Banach Theorem in real space) to get a linear
functional # which 1s an extension of /' from M to X such that

JF(x)| = p(x) foral xe X.
ie. | F)|= /=)l forall xeX.

This is true for all x = ¥ : So we ccrnciu_dc that I is a bounded linear functional

: weerit_h HEN=0 L O T i i e A R T o (1
Further, over A we have flx) = F(x) : g
So | ()= FG)I <[ Fflllx|| for all xes . This gives
ey SRR A @)

Mow (1) and (2} together say || Fll=l| F |l
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§ 4.2 SOME CONSEQUENCES OF HAHN-BANACH THEOREM : :
Application L Gi‘-;’ﬂt_l areal NLS (X, | ) and a non-zcro member x; € X . There is
a bounded lincar functional F over X such that F(x,) =|| x, || with LE || =1.
Proof : C:}nsidcr the sub-space M of X épamwd by x:
Then M =[x,]={ax; o any real scalar}
Define /' M — Reals by the rule :
Slexp)y=crllx|l; as (axg) e M . 5
Then f is a linear functional over M and | 7(x)]| =le|llxll=llax || for all
_x=axyeM and hence we have | F1l£1. ie fis a bounded linear functional.
Further if u = crx, is a member of M with ||u|{=1 we have
| fat=le |l s l1= e I =llull=1
~ A Iz1fG)| =1 giving || f]|=1.

Now an application of Hahn-Banach Theorem gwes a bounded linear functional
F over X satisfying

F(x)=7(x) xeM
and || F =]/ ]=1 _
This gives  F(xy) = f(xp) = x, || and || F||=1.

Corollary : For a non-null NLS {X, Il D). its conjugate space X* is non-null.
(Hints : because F appearing in corollary is non-zero member of AN

Application 1I. For every xe X, j[x]|_ sup |f{ )|
Fl=0el* “ f”
Proof : From Application T we find a non-zero huunded linear functional
ﬁ] € X* such that fy(x)=|x|| and || ;] =1.

: | /()] . | fof)]

Tharefore, R 1AL
= | f(x)] ; :
ie. Hfg}gx* 7 z| x| : B
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On the other hand, if f is any non-zero member of X*, we have

| A=A N
ar %L”I“ r.h.s. being mdcpcndent of f
mACII
we have,.. f(i[?jEY* Hfl —“ ” {2}

From (1) and (2) one has ||x| = sup | ﬂx}'.
JGmex WAl

Corollary : If fx) = 0 for every non-zero bounded linear functional ;" € X .
then x=0 in X '

Applmatmn IT1. Let M be a closed subspace of X and M = X s i we(X\ M)
and 9= dr.sf{r.' M= Irgf || 12 — 112 i|

Then d = 0, and there is a bounded linear functional f'e X * such that
() fx)=0 for xeM
(i) flw) =1
and (i) /1=
Proof : Here M is a closed sub-space (#X); so d = 0.
Take N = Linear subspace spanned by M and u
ie. N=[Muful], So every mmnbé_-r of N is éf‘the form m + fu where 1 15 a _
real scalar, and meM. '
Define g: N — R by the rule :
g(m+an)=t as (m+m)eN.
It is easy to check that g is a linear functional over N such that g vanishes over
M ie g(m)=0 for meM, and glu) = 1 (taking £ = 1),

Lt ) [+
lmvad] 7

Now |&(m+t)|=|t|=
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_mra] | m+iu|
2= d

becanse d =inf |[ju—v||<|u—(-2)].
= = = g

1 .
— || B+ ||
S llm+tu]f,

This is true for all member (m+&w)e NV ; and hence g is a bounded linear

functional over N with || g || = %

]
So, lg “53 (1)
‘Again from d=in£1|w~m ||, we find a sequence {m,} in M
such that || —m, || > d as n—sw
ie. hmlju—m,|=d x S )
Now |g(m, —u)i=llg|lllm,~u]|
or,  |glm,)-gl)|=|lglllim,—u|
ok ]'D—'ll < || gl m, =2 || ; (g vamshing over M and g(u) = 1).
or,  1=liglllim,~ul| '
Now passing on limit as n—» % we produce
l<llglld
o 1 ' : :
. giving, ligllz SR A

Combining (1) and (3) we have [l /l=—
Finally, Hahn-Banach Theorem says that g has an extension f from N to the
whole space X as a bounded linear functional with || f||=| g As f and g agree

over M — N, we have the result as wanted.

Application IV. Let M be a sub-space of NLS (X, || D and pf »« x;if we (X \M }
such that dist(u, M) > 0, say = d. ;
~ Then there is a bounded linear functional j e x *. satisfying
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(i) Fx)=0 overM (forxe M)

() Muw)y=d
and (iii) || | =1.

Proof : Let N = Linear sub-space spanned by M plus w, ie. N =[M wiu}]
Now define  f: N — Reals by rule : :
flm + 1) = td (d as above), where m + fu is a representative member of
N(m € M, t a scalar).
Clearly fis a linear functional over N, such that for 7 = 0, f vanishes over M and

fuy=d(=1).

Also for 10, ||m+au| =]l - r[—T- u] || (here _TmeM)

4nu;?ﬂmzma

So, | f(m+iu)=|t|d =| m+1u|l; this inequality stands even for 7 = 0.
That means, [ is a bounded linear functional over N with || £[|=1.

For =0, we find by Infimum property, a member me M such. that
[|m—ul|<dt+e.

Put p:HE Tk , making [|v||=1 and ve N (becaus::, v is the form g’ 4 'y ).
L Lf0)I= - Ivleivii=D
|tm |l d+e d+e
That means, || f|| 3 —= . Now this is true for every +ve g, and talcmg S
we find || fll=1. ;
ie. ||fllz1 e S

Combining (1) and (2) we find || f||=1. Now we apply Hahn-Banach Theorem
to find an extension £ of f from & to the whole space X as a bounded linear functional
over X with || /|| =|| / ||; since I agrees with f over A, we have the result as desired.
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§ 4.3 CONJUGATE SPACES X*, X**, ... OFA NLS (X, || I} :

Let (X, || ||) be a NLS; then X*, K= (X’i‘}*; . are first, second, ...conjugate
space of X. :

' Theorem 4.3.1, If X* is separable, then so is X.

Proof : Suppose ) is a countable dense subset of X*. Let D, be the subset of D
which is dense in the surface {f e X*:|| f||=1} of the closed unit ball of X*; let us

write Dy ={f, fo: o Sur -} with || £ ]|=1 for all # From || £, [|=1, we find a

- member say X, with || x, ||=1 such that

; 1
|! .»f;z {JC”} | = E
Consider the linear sub-space L of X spanned by {x,, x5, ..., x,}

ie. L =[x, X, .y X,.....] and Put M = T (closure of L). The M is also a linear
sub-space of X. j
 Suppose, M#X ' SN i

Take x,€(X\M), then d =dist(xy,M) >0 because M is closed.

By application of Hahn-Banach Theorem we obtain a bounded linear functional
F e x* with || F||=1 such that F vamishes (I = 0) over M and F(x,)=0.

Cleatly F is 2 member of the set {f e X*:|| f||=1} and F(x,)=0 for all 2.
Now /(6) = £,00)~Fx,)+ (s, gives '
FACHIEFACHENACHIRAPIER]
=[P

Thus <| fiG)I<A~F x|

‘ot %{ i £, = F || for all .n; This contradicts that { ,ﬁ, s os fiyaer} 18 dense in
theset - {f e X *:| fll=1}.
So, M=X
Thatis L =X
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Now L contains that subset formed by finite linear combinations of o

et

with rati{ma_l coefficients; and that subset becomes countable dense in X, The proof
is now complete. '

Remark : Converse of Theorem 4.3.1 is not true. The NLS /, consisting

=]

of all those real sequences x=(x,x,..x,,..) such that leﬂ{m with norm
=

lxll = z i| is separable but its conjugate s;pacc [, consisting of all bounded
sequence; of reals is not separable.
.Examplﬁ 4.3.1. Let (X, || |) be a NLS over reals, and let x,,x, € X with X # X,
Show that there is a bounded linear functional f over X such that £(x) = f(x,).
Solution : Here x, x, € X with x, #x, ie. x —x, 20 in X. So an application

of Hahn-Banach Theorem there is a bounded linear functional f e X *(f 2 0) such
that '

Jlx —xy)#0
or, . fx)=f(x)=0
or, f(x)* f(x).

- Given a NLS§ (X, || |[) we show that there is a natural embedding of X in its
second conjugate space X** through a mapping, called the Canonical mapping that
we presently define using A™.

Theorem 4.3.2. Given xe X, let x(x*)=x*(x) forall x*= X* Then % isa
bounded linear functional over X*, and the mappmg x> ¥ is a Linear Tsometry of
X into X**

Proof : Let xe X, x* x*ec X *; tﬁen we have

X6 *4x*) = 00 * 00 = x ¥ (0 +x F () = X005 + 3, ).
Also if A is any scalar we have ¥(Ax*)=(Ax*)(x)=Ax *(x) = Rj_(x,'*).
Tﬁerefbre % is a linear functional over X*.

Now we show that | x|l = §|S]"-°i1|p]ﬂ-x*(x) 1.
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By Hahn-Banach Theorem we find a member x*e X * with || x*||=1
and || x* ()| =]l x]l-
Therefore || x|l = sup {|x*(x}]}
Il L I : (1 .

Again  [[x*) sl 2l <l || when jlx*[|<1
Therefore [jx||z]x*(x)| when ||x*{|<1 |
Thus x|}z sup [x*(x)]. Tae v
s el g ol o ®
From (1) and (2) we have
| x| =sup{| x*(x)|: x*e X * with [|x*||=1}.
which is =supf] (x*}]: x*e X * with [|x*|| <1}
SE _
It shows that # is a bounded linear functional over X* with || & || =]| x]|.
Finally, let x,x,€ X and y*e X #, then '
(3 +2,)(x*) =x*(x+x,)
o =x* ()t a*(x)
= Ry (%) + & (x%). |
Similarly for any scalar o we have (@) (%) = x *(0x;)
: " = ax* (%)
= 0% (x*)

 Therefore the mapping x — % is linear; and since || &]|=]| x|, this mapping is
Isometry. ' :

That is, x— & is a Linear Isometry of X onto the linear sub-space {%:xe X*)
of X**,

Definition 4.3.1. Given a NLS (X, || |, Linear Isometry x— & is called the
Canonical mapping of X into its second conjugate space X**. :
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* Definition 4.3.2. A NLS (X, || |} is called reflexive if and only if the Carionical
mapping x — % maps X onto X**

Thus a necessary condition for X to be reflexive is that X is a Banach space. . -

However there are Banach spaces without being reflexive,

§ 4.4 OPEN MAPPING THEOREM AND CLOSED GRAPH THEGREM

Like a big and important theorem of Hahn-Banach we have another big theorem
known as open mapping theorem in Functional analysis. There one is concerned
with open mappings that send open sets into open sets. Open mapping theorem
states conditions under which a bounded linear operator shall be an open mapping,

Definition 4.4.1, Let X and ¥ be two metric spaces. Then a mapping f: ¥ — ¥
is called an open mapping if G is an open set in X, its image under f=AG) is an
open set in ¥

Theorem 4.4.1. Let (X, || [[) and (T, || [} be two Banach spaces; and T: X — ¥he
a bounded linear operator which is onto (surjective). Then T is an open mapping,

The proof of the above theorem shall rest on following Lemma that we prove first.
Lemma 4.4.1 Let T: X' — ¥ be a bounded linear operator which is onto and let

Bﬂ = B;(0) be the open unit ball in X, then T(B,) contains an open ball centred at 0
in V.

Proof : We may complete the proof in three stages as under : -
(a) 7(B,) (closure of T(B,)) contains an open ball B*.
(b) If B, = open ball ‘H {D) in X, then I(B ) shall contain an ﬂpen ball ¥,

centred at 0 n Y.

and (c) T(B,) contains an open ball cenred at 0 inF

(a) Consider open ball B =B (0)c X If xeX, we find large real £ so that
2
x & kB, . Therefore we write '

o

Xe= o kB, ; Since T is onto and linear, we have

F=1T(X)=7 (U "H?I] KB = O kT(By)  taking closure did not add
more points to the Union = ¥ As ¥ is a Banach space, we invite Baire Category
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Theorem to conclude that one component say kT(B), contains an open ball. That means

T{H;, contains an open ball, say, B* = B(y,, ). So we write

B*—y, = B(e, "}C”h’l} Yo

(b) We show that B*— Vo < T(By), where By, stands as appearm,g in thmrem
This is accomplished by showing :

T(B)~yo € T(By)

Take ye7(B,)-y,; then ( Y+ y)E 7(B) (Bﬂ' and 1'ememberm5 that y, e T'(B))

we find

", = T{w” )& T(B,) such that imu, = y+y,

v, =T(z,) € T(B;) such that lim v, =y,

Since w,.z, € B, and Bl is of radius = "ll; we have

1, = 2, 1< 11, [+ 112, | < 2+ =1; So that (v, -2,) € By .
From T(w, ~z,)=T(w,)-T(z,) = tt,~v,, =y as n—w.
Therefore, ye m. Since yé(m—yu] 15 an arbitrary we have shown
' m—fu CW .
From B*-y, =B(0,&) c T(B)) - y, above we have

E*—yuzﬁ{ﬂ BT o S Q)

" Take B, = H{ﬂ 27N e X Smce T is linear, we have 7(B,)=2" "T(BU]

From (1) one obtains

o B{Qvéi?) =T(B,) L G et ()

e Finaliy, we show that Vi =B(03 F}C 1 (Hn)..
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Take y EI}] . From (2), for n =1, we have KI{: ;TT(EII—)

Hence J’Em and we find ve?ﬁ such that IEy—vH{% '

Now v e T'(B,) implies veT'(x) for some x, € B;.
“Therefore ily—T(xJﬂi%

Using this and {2) above with # = 2 we see that (y—T(x Nev, o rﬁz}
As before we find x, € B, .sm:h that || ¥ =T I =T{x) |l < -g-

Hence (y="T0x)~ ?'{xz) eV, < T(B;). and so on. In nth step we take x, € B,
such that

SPGB AL L ®)

“:v Zf )] <

Put z, = X, + %, +... +X,; Since x; € By, we have [| % l| < that means i > m,
o
[z, =% |I{ 2 || 2 || = Z A which — 0 as m —» 0.

k=m+1 =m+l

So {z,} is Cauchy; let hm T, =% (X is a Banach space).

Also x € B, since By has radius = 1, and

Zu:qr < ;Lﬁ

As T is continuous, we have rlix_:& 7(z,)=T(x) and (3) shows that T(x) = »

So yel(B;).
Proof of Theroem 4.4.1. If A is an open set in X, we show that 7{4) is open in

Y, by showing that every y e I'(x) € T(4) attracts an open ball centred at y = T(x) within
T(4). :
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 Take y=T(x)eT(A4). As A is open there is an open ball centred at x < 4. Hence

A~ contains an open ball centred at 0 € X . Let radius of that open ball = 1 Put & =1 or
r =%. Then k(4 — x) contains the open unit ball B(0.1). Now Lemma 4.4.1 says

 that T(k(A x)) =§[T(£]—T{x}] contains an open ball centred at 0, and so does

T(4) — 1{x). Hence T{A) contains an open ball centred at y = T{x). As y is an arbitrary
member of T(4), we have shown that 7{4) is open.
Corollary : Under open mapping theorem if T is bijective, T~ is bounded.

Example 4.4.1. Let T : R* = R be defined b}f T(x,y) = x for (x,) € R*. Show
that 7'is an open mapping. Examine if 7' R2 — R? where T(x, v)=(x, 0). (x, y) € R’
i3 an open mapping.

Solution : Here T: R* — R given by T(x, ) = x is a projection mapping and we
know that it is a bounded linear operator such that T is onto. So we apply open
mapping theorem to conclude that 7'1s an open mapping (In fact, 7 sends open
cireular disc of R” onto an open interval),

F 7 K2 — R* is given by 1{x, y) = (x, 0); there Image of an open circular dise
under 7' is not like that. So 7 is not an open mapping.

We know that all linear operators are bounded. For instance, dlﬁerﬁntmi operator
is an unbounded linear operator, Closed Linear operators that we introduce presently
behave satisfactorily in this respect. Another important theorem, known as closed
Graph Theorem states suflicient conditions under which a closed linear operator on
a Banach space is bounded. '

Let (X || |y and (¥, || |I) be NLS. wtth same scalars.

Definition 4.4.2. A linear operator 7 X — ¥ is called a closed linear operator
it its graph G(1) = {(x, y) e (X x¥): y=T(x), xe X}is a closed set in NL§ X x¥
with norm [[ (e, ) =llxl+lxll, (ep)e(XxF). |

Theorem 4.4.2. Let X and ¥ be Banach spaces, and T': X — ¥ be a closed Imear
operator. Then 7'is a bounded lincar operator.

Proof : First we verify that Xx¥ with norm ||(e, ) =[x/l +ly]l as
(x, ) &.{X x¥) is also a Banach space.

Let {z,=1(x ,,y,f)} be a {“auchy sequcncc in Xx}’
" Then |12, =2y =11 % = X 14 | 3 = V|
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Thus || x, —x, <l 2, -z, || 0 as n,m - o shows that {x,}is Cauchy in X,
and since X is complete,

let limx,=xec X, and similarly let Iim'yj, =yelt,
H ol }H.w
These together imply that J!I_ﬂ 2, =g y)$ (X x¥).Thus we see that x x ¥

is a Banach space. Graph G(7) being a closed set:in X x ¥ _ it follows that G(71) is
complete (infact, ((7) is a Banach space as a subspace of X x¥ )

Consider a mapping p : G(¥) — X given by p(x, T{x)) = x € X. Then p is linear
operator over G(7). p is also bounded, because

Il 2 G, TN = [l =11 [|+ 1| TGe) ) = e, T(x)) ]
Further, p is bijective; with P given by

p X > G(r) mapping x — (x,7(x)) as xe X . By applying open mapping
theorem we find p ! to be bounded. Hence there is a +ve K such that -

TN <K 2] for xeX.

Therefore [[TC| = TE |+ xll =l Ce LGN =K |1 x)]-
That means 7" 1s bounded. The proof is complete.

Example 4.4.2. If X and ¥ are Banach spaces over same scalars, and 7' X —>. ¥
is a linear operator. Show that Graph G(7) is a subspace of X xV.

Solution : Let (x,,T(xl }) and (xg, T(x, ]) be two members of G(T) as B e
where G(T) = {(x,7(x)): xe X} (XxY).,

Then (x,7(x))+ (%, T0e)) = (% +x, T(x, )+ (xy))
=(x +x, T(x +x3))  (I'is linear)
cG(T). : '
If Ais any scalar A(x,7(x)) = (Ax, AT(x)) = (Ax, L Ax, }) e G(T).
Therefore G(T) is a sub-space of (X x¥). A
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EXERCISE A

Slmrt answer type questions
1. Show that a norm in a linear space X'is a suh-hnear functional over .X.

2. Show that a sub-linear functional p in a linear space X satisfies (a) p(0) =0 and (b)
p=x)z=-p(x) for xc X.
3. Show that non-null NLS X has a non-null conjugate space X*.

4. IEAx) = fiy) for every bounded linear functional on a NLS X, show that x =y in X

5., If X and Y are Banach spaces show that the Null space N(T) of a closed linear
operator 1"; X' — ¥ is a closed sub-space of X.

6. If two non-zero linear functionals f; and £, over a linear space have the same
T\Tull space, then show that £} and f, are prop{)rtmnal :

_ EXERCISE B
1. LetXbeaNLS, and x, € X suchthat | f(x,)|<c forall fe X* with || f[|=1,

show that ||x; || 2¢.
If X 1s a NLS which is reflexive, SI?GW that X* is reflexive.

3. Tf X and Y are Banach spaces over the same scalars, and T: X — ¥ is a closed
linear operator, then show that (a) if C is compact in X, 7(C) 1s closed in }" and
(b) if K is compact in ¥, 77 (K) is closed in X,

4. Letfbe a non-zero linear functional in a linear space X, and x, is a fixed element

in [X HN{f}) AN = ﬁull space of [ ={xe X : f(x)=0}), then any member

¥ in X has a unique representation x =ax, +y where y e N(f). Prove it.

. [ b
5. Show that T : Cla,b] — R defined by T(f)= j fdi, f € Cla,b] is a bounded
linear functional over Cla,d] and find || T||.
6. Show that f defined over C[-1,1] by the rule :

1) =[xt~ [ xdt, xeCl-11]
is.a bounded linear functional over C[-1,1] and find || £].
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UNIT 5

(Contents : Inner product spaces, Cauchy-Schwarz inequality, LP. spaces as NLS,
continuity of LP. function, Law of parallelogram, orthogonal (orthonormal) system
of vectors, Projection Theorem in Hilbert space H, Reisz Theorem for a bounded
linear functional over I, Bessel’s inequality, Grahm-Smidst orthogonalisation process,
complete orthonormal system in H.)

§ 5.1 INNER PRODUCT SPACE

Tn a Normed Linear space principle operations involved are addition of wvectors
and scalar multiplication of vectors by scalars as in elementary vector algebra. Norm
in such a space generalizes elementary idea-of length of a vector. What is still more

missing in an NLS is an analogue if well known dot prpdu_ﬁt alb =ab +ah, +ash,,

and resulting formulas among other things like (i) length | 2| = «Ja.a and (i) relation
of orthogonality a.b = 0. These are important tools in numerous applications.

History of Inner product spaces is older than that of NLS. Theory had been
initiated by Hilbert through his work on integral equations. An inner product space
is a Linear space with an inner-product structure that we presently define.-

Suppose X denotes a complex Linear space.

Definition 5.1.1, X is said to be an Inner Product space or simply LP. space if
there is a scalar-valued function known Inner product function, denoted by, <, =
over X, X satisfying - : :

(P 1) =x +y 2= =<y 2=ty z= forally, yz € X
(LP. 2) <o, y» = o<, y= for all scalars ¢ and for all x, y € &
(LE 3) < x2= <x,p> forallx, y € X, bar denoting complex conjugate.
(IP. 4) <x, x> >0 forallx € Xanditis=0 ifand only if x=0 in X ~
From LP. axioms above one can immediately derive the following
{a} <x,oy ==& <x,y> for all scalars & and x, y € X.

(b) <Ax+puy.z==A<xz=+p<yz> for all x, y, z € X and for all
scalars A, 1.

(C) exay+Pzr=<axt Pz xz=ag<px=+f<z,x>
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=a<y,x>+f <z yz=a<xy>+f<xz>,

because
conjugate of a complex scalar is itself

Example 5.1.1. Unitary space ¢” —gxew..x¢ whose ¢ is the space of all |
H mpm

complex number is an LP. space with LP. < > given by

SE W)= LW HZaWy .t W

=" ‘where 2=(21,23,...--2,) and
i - 5 g
W=y, W, ) ed

+...+z

L A

Solution : Here < Z,W > =W 4 25,

=i zjwl +22w2 s .Z"WH = zl-Hrri +ZZWE e 31

<w,z>; and this (LP. 3); rest of axioms are routine
check-ups.

InanLP space (X, = =) of x € X, let us define I ..x||2-.: <X, x = which is always
a non-negative quantity and is equal to 0 if and only if x=0 in X

Theorem 5.1.1, Every LP. space is an NLS. To prove this Theorem we need
help from following Lemma that is an independent proposition as well

Lemma 5.1.1 (Canchy-Schwarz inequality/C-S inequality)
In an LP. space (X, <=)ifx, y € X,

l<xy> =[xyl -
Proof : Without loss of generality take y 20 in X {lakmg y=0LHS. =RHS.
For any scalar A we have ;
| x+Ay|’=0
of, <x+Ay,x+Ady>=0
o, =xyr+Alepys+d<xyr+lapx=z0
o [|x|?

-i-tﬁH2 |[y]|2+i{x,y}+,1c:x;y:>2_?{}

Sy s
Let us now choose =252~
= =V y=

R
=~ —
Iyl
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Then LS. of above inequality

X, <x,y3f |<xp> : -
-=“,‘C!| | .}"l | yz | » | ”xlz_lﬁx:.}’:l
Iy 1P >l Iy 1P (57
Therefore above inequality assumes the form
2
¥l
or l<x,y=<[l x|l ¥
Proof of Theorem 5.1.1. Norm axioms (N.1) and (N.2) follow from (lP 4)
and the fact |[ax|’= <ax,ax>=a& <x,x>=|a|| x|*
This gives [ ecx|*=|e||| x|
For triangle inequality (N.3), let x, y € X, then we have
lx+ylP=<xty x4 y>=|x[f +<ny>+<yx>+|y]*
Thus |[x+y| <[ x| +|< %,y =+ | g2 2+ ] y |
' =l x|? +2|< 2,3 =+ || 1P
<lxl* <2l x[lly |+l 71 by Lemma 5.1.1.

=l +2 1.
‘Therefore [|x+yll<]lx[l+[ly]l.
The proof is now complete.

Remark Equality sign in C-S inequality holds if and only 1f s 0 or

=\l x+Ay| ie. ¥ ==hy orx + Ay =0 showing that x and y to be linearly dependent

Theorem 5.1.2, In an LP. space (X, <>}, show that 1.P. function is a continuous
function.

Proof : Let {x,} and {y,} be two sequences in X such that lim z, = x and

lim y, =y in norm. That is to say, rl?r_?;lbﬂxn —x||:ﬂ:!h‘_r}nm||y,,_—y|[ :

. Now [ek =gy pnl=lay Sy sy sy pil]

=lex,, Y, ~y>t<x, — x>

172



<|ex,, Yy =¥+l x, —xp >
< 1LY = U+ T, =115
- Since m X, =% innorm, {x,} s norm bounded, So there is an M {+ve}_ such
that ||x,||<M for all n
Therefore above inéquality assumes the form
<My, —yI+lyillx,-xll>0 as n—ew. This shows that

1““ <Xpy Vg >=<X%) > and LP. function is continuous at (x, y).

Dci'mtmn 5.1.2. An LP. space X is said to be a Hilbert space if X is a complete
NLS with norm || || as induced from LP. function.

Thus every Hilbert space is a Banach space. But opposite is not true.

Very ofien a Hilbert space is denoted by H and an LP. space is termed as a pre-
Hilbert space.

Theorem 5.1.3. If x and y are two members in a Hilbert space H, then

lx+ I + 112y IP=21x]?+ 2]l p)/*. CLaw of parallclogram).

Proof : Here ||Jc:-|vy|[2 +||x—y||2=-e:x'+y,x+y:»+ <X— W X—y>
=[x+ <xy>+<yxm+lyIP 2P -<xy>—<yxs+] )
=2 x| +2[ » 1% | '

Remark : In school Geometry it is known that sum of squares raised on sides of
a.parallelogram is equal to the sum of squares raised on its diagonals. This is exactly
what is in Theorem 5.1.3 above. Hence the name is Law of parallelogram.

Example 5.1.2. The sequence space I, of all real sequences x = {f,,:fz.,_.. B2l

with Z]:,, Pz is a real ’Hﬂbert space
5k

Solution : We know that 15 a rgal linear space where let us define an LP.

function <X,y == Erf,-i-‘?,- , the rh s series is convergent because
: i © fal

& 12504 F+iml Hx=Cuba)r 2= dE0] L 2
By routing exercise we check that all LP. axioms are O.K. in [, and /, is an LP.
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space wﬂh real scalars, Furthcr with respect to the induced norm || x || | = i
15 also known that /, becomes a complete NLS. Hence /, is a Hilbert spaczi.
Example 5.1.3. The sequence space /(1 < p <o) consisting of all real sequences
o9
x=(§,5;,...) with (Zi&ﬂ | p | <% is a Banach space without being a Hilbert

space with TP, Funﬂtu)n to mducc Banach-space norm.

Solution : We have already seen that sequence space /,(1 < p > 0) is a Banach

P
w P
space with norm || x|/ = [Z| &l P] , A8 X (61,62, ) € Ip . We now show thiat this

i=l

norm does not come from an LP. function on / - ']'l-ru's is verified by slu}-wing that

this norm does not satisfy Law of Parallaiagrarﬁ, Take J.‘F(_L I’"_blgck)’

: 1/
i {  Tioc ) from 7,. Then we find ;|x1|:||},||:2/p- and [ x+yll=2
| 2= ¥Il. Therefore, if p#2 parallelogram law fails,

§ 5.2 ORTHOGONAL ELEMENTS IN HILBERT SPACE

Let H denote a Hilbert space.

Definition 5.2.1. (a) Two members x and y in a Hilbert space H are called
orthogonal if < x, y= = 0,

We write in this case x | y.
(b) Give_:n a non-empty subsct L of /, an element x € H is said to be orthogonal
- to L, denoted by x L y if <x, {> = 0 for every member / € I.

Theorem 5.2.1. (Pythogorian Law) Ifx, yve Hand x L y, then
@ [lx+pIP=f =1+ 2l
@) ||~ pIP=lx]f 1l 2I?
Proof : (i) ||x+ylP=<x+pxtye=|x|f+<xy=+<pis>e|y|]
=[lxIl* + < x> <, p >+ || ylP=|| 2]+l y|* since <% y==0.
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(1) the proof is similar to above.

Theorem 5.2.2. Every closed convex subset of a Hilbert space A hab a unique
member of smallest norm.

Proof : Let C be a closed convex subset of H, and let d = Inf {[|x || : x €C}. -

[ ]

Let {x,} be a sequence in (" such that lim || x, ||=4d. ﬁ}r x,,x,cC we have -
ol 5 a

%{x” ¥ xm} e (0, because C is convex.

St el o i el SR o e ()
By Law of Parallelogram we have
1%, =%, [P= 2101, [ 42015, 1 =1, + %, |
<2|x, P+ 2 x, P ~4d>
Since lim ||, || =d and similarly ||, T R S M @)

Hl—3 0] taklng limit 71, i —> o0 in (2) we get

lim ||x, —x,||=0; showing that {x,} is Cauchy in C.

Ho—»o0 .

As C is closed, Let lim x, = xeC. Thus || x|= lim || x, || =4.
f H—a

Fl—uD

Hence x € C has a smallest norm, For uniqueness of x, let '€ C so that || x'||=d

By convexity of ¢ we have x-;x e and also ”1‘_;' ||=d. Again by Law of

Parallelogram we have

cix 2 _lxlP NP Jx-x1P
| IF = +
b 2 2 7

< TPl l? i ey

=d?%; giving |!x+x’n{£_a contradiction of "x-gx' [=d as
arrived at early. The proof 1s now complete. '

Theorem 5.2.3 (Projection Theorem). Let L be a closed 'subspaua of H and
L # H ; Then every member x € ff has a umquc representation x =y | z where
yvelLand x | L.
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Proof : If x is a member of L c H ; we write x=x+0 when 0el [
Let us take xe(H \L), and put ! '

d = E‘;E | x~a ||2: dist(x, ‘Tf}; Because L is closed we have d > 0,
and there is a sequence {a,} of member «, in L such that .
?Er;dnzﬂx—a;,f:d. ek

Take any non-zero member a in L. As L is a sub-space of H, we have for any
scalar &, (a,+ea)el and therefore

| x~(a, +ea)|* = d

or, LX =g, —8d, X~a, ~ga>2d
2 = : = o 2 2
o - |lx=a, I ~Fxx-a,, ax-g2a.x-a s+[z] a2 d.
: <X=das ;
MNow take £:T‘-i—‘|2’—;w1th such a choice of &, we have
a
2 |«':x~c:m¢:-'_::»|2
R e
llalP
2 2
o, |ex-a,a>P<lal?(@,-d)
or, |ex—a,a=<lal.fd,-d ; W

Inequality holds for a=0 in L; So for any ge I we have

l=a, —a,,,,ﬁ HElca, ~xaxltlx—a, a>|

ie.  |<a,-aaz<l\al(Jd,—d +\d,-d) from (*)

Putting a=a, —-am, we have

< cty =~y @~y 2| <N 1, =01, ||y =+, ~d)

ie.  llay=ayl’ <lla,~a, | (Jd, ~d +d, —d)
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T | s (Jdn —-d+ \/c_f_,;}_—ﬁ], where r.ﬁ.s, —» 0as n,m — o0 by (1'}‘
That means {a,} is Cauchy in /.

Since L is closed, let Iim a,=yel .

Now in }qx a”,a“ﬁlfHaHﬂ." . let us pass on the hm a,=y and get
< x~y, @)= - |
e -::x—y,{}}:{}; This is true for any member ¢ in L; Therefore
(x=y) LI Letusputz=x-

Then we have x =y + z where ye L and z L L.
For uniqueness of this representation, let x= y+z=)"+2 where y'e L and

o fhu%y, V' come from L and z,z' L L. Clearly, v—3y'=2"—z, and

||y—y|]==::y—y,y—y::-={y—y,z—z:>={} where i|z~z][j_f..
Therefore y = y" and hence z = 2" The proof is now complete.

Remark : In representation Theorem 5.2.3. where x =y + z, y is called projection
of x on L. It is obvious that collection M of all elements, orthogonal to L forms a
sub-space. M is also closed because of continuity of T.P. function. That is why z is
called projection of x on M which is called orthogonal complement of L. Further,
Hilbert space H is then sum of two orthogonal sub-spaces L and M. Here we see
orthogonal sum is a special case of the Direct sum, Thus projection Theorem 5.2.3
gives a decomposition of any member in Hilbert space H into its projections onto
two complementary orthogonal sub-spaces,

§ 5.3, Tt is important to know that the general form of a bounded Linear functional
acting on a given space. Such formulae in respect of some NLS are known; their
derivations could be much complicated. Situatmn is, however, surprisingly simple
for a Hilbert space H

Theorem 5.3.1 (Riesz Theorem on representation of functional over H).

Let f'be a bounded linear functional over a Hilbert space H. Then f{x)=<x, y >
for all x € H and for some z € H uniquely determined by f such that || z | = | £]|.

Proof : 1If fis the zero functional over H. We take z=0 in H to, do the job.

Sﬁppme that f is a non-zero bounded lmcar functional over H. Consxder the null-
space N(f) of f where
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N(f)y={xe H : f(x)=0}. Clearly N(f) is a closed linear sub-space of H
without being equal to A.
Take a non-zero z, €1 N{f)

Letxe H. Putl ve= f(x)zg - f(zg)x
So that f{‘r’}= S Ce)zg) = 1 (z5)%) _
= f(x)f {“I}) flzg)f(x) ; (fis linear)
=0
That means v & N( /), by choice z; is orthogonal to v
So O=<v,zy>=< f(x)zp - flzy)x, 20 >

= flx)<zg, 29 > —f(20) <%, 25 >

Nzl FO)- Flz) < ¥z >

Giving  f(x)= ﬂ( ﬂf < X2y
f[?:n]
' Tzl
= { x, ) > (say), where z= f{zﬂ'g Zp. R ]
: Il 2o |l

This is the répresentative formula for f{x) as wanted.
For ﬁniqueness of z, let f(x)=<x,z >=<x,x, > for all er
Then we have XL P=EML > O, <X 5 —-2>=0
put x=2—2,: S0 <52, Z- :»:2:: 0 or, [jz—2|*=0 or, =2,
Finally, We have | f(x)|=|<x.z > <| x| z] _
' - This gives || /] £]lz]| R
Again taking z = x in (1) we have <z,z>= f(z)
or, ||z |* <|l £1lll I
orn, Izl =] £l T
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- Combining (1) and (2) we have || /|| <] z]|. !
. Converse of Theorem 5.3.1. is true. This is what Example 5.3.1 has to say.
Example 5.3.1, Let z be a fixed member in a Hilbert space H. Show that

f(x)==<x,z> for all x € H is a bounded linear functional over H with
L =1zl
- Solution ; Here /: H —Scalar such that for x5 el
Then f(x+x)=<x tX, 22 =<X, 2>+ <X, 2= f(x)+ f(%).
And for any scalar @ flax)=<ax,z>=a<x,z>=af(x)
Thus f'is Linear. Further | f(x)|=|<x,z <[ x|l z|| (by C-S inequality)
This is true for all x € H. Therefore fis a bounded linear functional such that
AP A e i ok
Taking x = z m fix) = <x, > we have :
' lzlf=<zz22>=f2) <l £l 2]
o, [[z||£]l.7]] G el b (2)
(1) plus (2) gives ||.f [ <l z]]. e

Corollary to Theorem 5.3.1. Every Hilbert space H is reflexive.

Because by Theorem 5.3.1. together example put up above says that every
bounded linear functional over . ie. every member of H* arises out of a member
of /1 and conversely. This correspondence gives rise to an isomorphism between H
and H*, and we say that H is self-dual and this in turn implies that here Canonical
mapping between H and H** is a surjection. Hence H is reflexive.

§ 5.4 ORTHONORMAL SYSTEM IN HILBERT SPACE H.

Definition 5.4.1. (a) A non-efnptj.f subset {e;} of Hilbert space H is said to be
an orthonormal system if

(i) i#J, e +e; e any two distinct members of {e} are orthogonal.

and (i) [le [|=1 for every i ie any vector of the system is non-zero unit
vector in /.

(b) If an orthonormal system of / is countable, we can enumerate its elements
in 4 sequence say it as an orthonormal sequence.
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For example in Buclidean #-space R which is a real Hilbert space the fundamental
unit vectors ¢ =(1,0,0,..,0), & =(0,1,0,0,...,0)...... e, =(10,..,0,1) form an
orlhanormal system of vectors in R".

leample 4.1, Let 1,[0,2x] be the real Hilbert space of all square integrable

- functions f over [0,2x] with LP. function

in ‘
‘i.fs.g?:jn fedts— feel {02r]

2r
: |tf||_:1l;f2dr_

Then eﬁu}:-ﬁi-,e“&)-_ “2}’;’” (1=1,2,..) and 052527,

form an oﬁhonnrmai sequence In [,[0,27]; because

0 ifm=n

2 ;

Inﬁcnsmr cosmtdt=4 r ifm=n=12..
27 Um=n=0

Theorem . 5.4.1. An orthonormal system in H is linearly independcnt.
Proof : Let {e;} be an orthonormal system in /1, and let for a finite subset, say, .
By B o e, of the system we have

. o tae o taye, =0 where @ 's are scalars. Then for 1< j <n we have

0=<0,e;> -<Za;e,, J,> Za e e

=a; <e;,e, ==da;; (other terms being zero because of mutual
orthogonality). So @ =&, =...=a, =0. That means any finite sub-system of the
given system is linearly independent. Hence proof is done.
Definition 5.4.2. Let {¢} be an orthonormal system in ff and xeH ; Then
scalars ¢; =< x,¢; > are called Fouries co-efficients of x wirt the system. \

Theoreni 5.4.2. Suppose {¢,,¢,.¢;,.....€,,...} be an orthonormal sequence in H:
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then for x € H,

o

2 2
Yl x> sl x]

i=1
(This inequality is very often termed as Bessei s inequality).

Proof : Let » be a +ve integer. If ¢; are Fouries coefficients of x w.rt. {e }, we

have
H 5 :
- el ={x- ¥ e, ¥- Zc?e
i=1 i
.-1 (18 L mn ! ”. n
=[xl =2 D e ) D e )+ Zcfeiizckeﬁ-
i=1 =1 7o s
il F Ll H
:|!.‘ac't|2 —ZE‘- <X, ¢ ::—Zc,. LK :>+Zc,- c:e,-,cherk >
© A =T i =1
E n oy
=l x| ZUH Z‘*:":‘*ZZ"*C& e =
ful k=
T o T - U e 2. o
=zt -2l -Ylel +Z|C:| =|lxlf =¥ laF
: i=l =l =l i=l
- H
Therefore, ZEL‘, P<lix|l or Zl{ x, e = <]l x|l
i=1 4=

/ el
This is true for any +ve integer m, and thus Z|r: xe = is convergent and
i jerl

i[{ ¥, ¢ = < ||.3t.;l12.

4

Theorem 5.4.3. In a separable Hilbert qpace H every arthc:-nt;}rmai system is
countable,
Proof : Let £ = {e;} be an orthonormal system in H which is separablc. If e, #¢€;

we have <¢,e;, >=0 and ||¢g [[=1=]¢,||.
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Therefore <e,—e;, e, ~¢; >=||¢ I ~<e.e;>-<ee >+ |P=0+1+1=2
8o, || g —€; i|2'—'2
o, |lg—el=v2.

By separability of H, we ﬁnd a countable set {5, 0 ,...} Whlch is dense in
E. So we find two members, say, ¥ and y, such that

V2

L 2
H,P,-—ﬂ.,- ”{T and |1J’j —Ey ”“i%'

So . V2=lle~e;ll=lle~ vty -y 4y,
| <lle -1+ —_yj-||+|1yj —e; |

zf

+”J”f }{; ”

Showing || y; — y; | ww‘f; clearly 7= j: This establishes an H correspondence

between members of £ with members of a subset of a countable set. Therefore E is
countable.

Gram-Schmidi Grthugﬂllsatmn Process : Subject is that in a Hilbert space H
one can transform a linearly independent set of elements in H into an orthonormal
system in H by a technique known by above name.

Let xy, x,,... be an independent system of vectors in H (So none is zero vector)
Put g = ” ; and let J"z = X, — 3¢, Where ¢, =< Xy,€ .

Next we put ¢, = ; By verification we see <g,¢ >=1, e, >=1,

B 2”

and <eg,e >=0.
Now let y;=x3—(cy¢ +cye;) where we choose ¢ = <Xy, € >,

¥

MNext we put €3 = W;— and as before we have
. 3 y

<e,e =1, <6 >=0 =<e,¢ >
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We continue this process, if €|,€s,....€;_; have been constructed, let us take

k-1
Y =X —Z%Ef

fisl

where ¢ =< x;,¢ > so that y, is orthogonal to e,e,,....e,_;; Define ¢ -

: . s Al
Inductively, we construct e, as a linear combination of x;, x,,... and x,. This way we

are led to orthonormal system (e;, e,,... ¢,,...) from (x|, X;,... X,,...).

Definition 5.4.3. In a Hilbert space A an orthonormal system E is called a

complete orthonormal system if there is no prthonormal system in H to contain E as
_ 4 proper subset.

For example, in Euclidean n-space H”.[a real Hilbert space) the set of all
fundamental unit vectors {e;, e5,....¢,} where e, =(0 1 0) j=1,2,

..... nisa
3 : . Jih place 2 i
complete orthonormal system in- R". ’ '

Theorem 5.4.4. In a Hilbert space H let {e,, ,,...e,...} be an orthonormal
sequence in H. Then following statements are equivalent (one implies other).

(a) {e;} 15 complete.

[h) <x,¢;>=0 for all 7 implies x=0 in H.

o
(<) x=-zf:_ x,e; > ¢ foreach xe H.
Ci=l ;

@ Ylexe HP=lxI? for every xe H.
C el :

Proof : (a)=> (b); Let (a) be true. Suppose (b) is false. Then we find a non-zero

xin [ such that <x,e; >=0 fori=12,..

Put e=—*_ Sothat|le||=1, and <e,e >=0 for all j,

(841
Therefore {e),e,,...,..€,,...}\w{e} becomes an orthonormal system containing

given system properly—a contradiction that {e,, e,,....e,} is complete. Hence (b) is
established.

H
(b) =>(e) Let S, =Z~=:x,e, > e
g i=l
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Then Z-::x e.>¢ =lim S, = S (m},]

FE— 00

_[f l=j=n, <xe ;:—c:Sn,ej =

:-::;x?el;. b Z:’:xﬁea =€ E'J- =
i=l

=~=:x,eﬂ,.::-_—f:x,evr:>={}
Thus »:.SH,E:J.}:{x,ej:}
Now <¥— 2 <X.¢ sepe; >=<x~8e, >=<xe 5—<8.e >
- ; ;
g By T *:th yr=axe,>-lim<§ e >=<xe >—<xe >=0

sl s € e : Jd i}

‘That means &; Za’: X,e;>¢g | therefore from (b) we have

. el
¥~ Y <xeve=0 je ¥=Y X0 e
o =1

(il

= (eal
=2— Lt ] -
(¢) = (d) . We have | x|| -~=:x,x“~_-:izllc:x,¢=-}ef_;f:r,ej}ef::-
i= F-

=< lim » <x.e >¢ czhm e, >e
:Hmz I Z‘*X }Lj}.

i N
=lim <) <xe>e, > <xe >e
iRty i = :.lh ‘HJ LJ}

—Iimzr:,xe_,}{xe ::-—hmZEfx =

P

(ra) . 3 B
=Y [exe
i=l
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(d)=> (a). Let (d) hold and if possible let {e;} be not complete. Then we find
an orthonormal system strictly larger than {e, ¢,....€,,.....}; say larger system looks
as {e, e, gz,...,en....} where, of course, ||e || =1 and <e, e=>=0fori=1,2, ... Now
(d) applies (taking x = €), and we have

==
llelP= Y lce.e > = 0— a contradiction, So we have proved (a).
=1

Example 5.4.2. Let {x,} be a sequence in Hilbert space H and x € H such that

im || x. ||= ,and i == . Show that li =x.
}Jg_{lgpll =] lim <<, x| =<x,x>. St lim x, = x
Solution : Given lim || x, ||=||x| and lim {x*,,xrr-:{x,x:»——-_llxllz.
: Fp—pi =300 3

: 2 ' 2
Now ||I,,—x1| Z{xn'_'xixu_x:}znxu ” _'{rn:'r}_”::xrxn}-'_!lx”z
=f 2, F =2 x x5 -<x, 054 21

<l xIF =l xl* =l x]? +] x]*=0 as n—oo.

Therefore lim x, =x

H--»oa

Example 5.4.3. In a real Hilbert space H if ||x || = || ||, show that <x + y
~x—y= = 0. Interpret the result Geometrically if A = Euclidean 2-space R
Solution : Let H be a real Hilbert space and x, y € H that such || x || = || ¥ ||.

Now <X+ ¥, X—YPr=<XX>—<XNVr4+< P, Xo—< P, V5>

=|[Jc'||2—{x,y>+{x,y}-—|.|y[|2 (because it is a real

Hilbert space, <x y>=<x, y>)
=0
That means {x+ ) L(x—y).

It Buclidean 2-space /°, fig is an equilateral parallelc_-grém i.e. a Rhombus with
adjacent sides represented by x and y with [|x || = || ¥[|; and we know that in a
Rhombus Diagonals cut at right angles.

EXERCISE A
Short answer type gquestions
1. IfinanlP space <x, u>=<x v> for all x in the space, show that y = »
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Show that Banach space c[a,b] with sup norm is not a Hilbert space with an 1P
to induce the sup norm.

If £ 15 a bounded linear functional over Euclidean 3-space R1 show that f can be
represented by a dot product

fx)=xz= &p+&p, +£305.

Show that in a Hilberl space H convergence of Zl X | unphes cmwergence of

J=1
Z"’J

Tf 55 denotes the Unitary space of all complex numbers It 7. & € ¢, show that
S z],z2 defines an LP. function.on ¢.

EXERCISE B

. If ¥ and y are two nen-zero elements in a Hilbert space M, show that
[x+yll=l[x|+][» | where equality holds if and only if y = @x for a suitable
scalar @

. Let ¢ be a convex set In a Hilbert space H, and d = Inf{|] x |: xec} 1 {x,} isa
sequence in ¢ such that iu:n x| =d s show that {x,} is a Cauchy sequence.

If {e,} is any urthc-nc-rma] sequence in a Hilbert space H and x, ¥ € H, show
thal :

| 2. <x6, > <pe, 21| x]l| ¥

H=1
Let {e:, Bryea e,,} be an crrthcnﬂrmai set in a Hilbert space f/ where n is fixed, If

H

x € H be a fixed member, show that for scalars oy, Oy, 0, llx - Zl:fx;ff Il is
i=

minimum when o =<x,e > i=1_.n
- Let {e;} be an_l orthonormal sequence in a Hilbert space H. For xe H. define

v, ;fix“fkﬁﬂx show that (x-y) L e, (k=12,.).

Show that for the sequence space /, (a real Hilbert space) its conjugate space /¥
is isomorphic to b, s
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UNIT 6

(Contents : Adjoint of bounded: linear operator in a Hilbert space H, Algebra of
adjoint operators, proudct of adjoints, self-adjoint operators in H, their algebra, Norm
of self-adjoint operator, space of self-adjoint operators, every bounded linear operator
in H as a sum of self-adjoint operators, eigen value and eigen vectors of self-adjoint
operator.) ' i

'§ 6.1 Let H be a complex Hilbert space and let Bda(H H) denote the space of all
bounded linear operators T H — H: Take one such 7': H — H as a bounded linear
operator. Let y € H. - :

Define f, : H — scalars by the rule :

fp()=<T(x),y> as xeH g (1)
Nofice that if x;, x, € H, we have

Tl +xy) =<T(x +x;), ¥y ==<T(x}+T(x;), ¥ > because T is linear
=<T(x),y>+<T(x,),y > using property inner product
= 1)+ 1, ()

Similarly. fy(@x)=a/f,(x) for any scalar o
That means, j; is a linear functional over H.
Plus | f,(x)|=l<T(x), y = =[|T(x) [ || by C-§ inequality,
<IT NP U=AT Iy Dilx]l forall x € H.
Therefore, f, is a bounded linear functional over H, and as we had seen ecarlier,
Riesz representation Theorem says, there is a unique member, say y*e /. such that
Jyxy=<x, p* > : SN, (1

where we remember that y* is determined by f,. From the text as put up above one
sees that given y e H, there is a unique member y*e H (via .

Let us define 7% [ 5 7 by formula : t
T*(y)=y* as described above e

This ﬂpem‘mr 1% is called adjoint operator to I'in / and as explained ahuve they are
~ connected by relation
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<T(x)y>=<xT*@ > from (1), (2) and (3) above for all x, ye H,

Explanation : 7% is well defined over H, Because, suppose that tor allx, ye H,
we have simultaneously

<L) Y i DAY >
and <T(x),y=>=<x1*(y) > for aﬂeth;:-‘:r h:H-H.
Therefore we see <x,7*())>=<ux,1 *(y]% forallx, ye H.
rﬁeaning thereby T*()) =T *(y) foi y € H. ie. I[*=T*
Theorem 6._1.!. T*:H — H is a bounded linear operator (T* e.Bda{H,H )},
Proof : Letx, ), z€ H. Then <x,T*(y+2)>=<T(x), ytz>
=<T(x), y > +<T(x),2>=<x, T*(y) > +<x, T*(z) >
=< x, )+ T*z) . . .
Therefore, T*(y+z)=T*(y)+T*(2) - sl (1)
Again for a scalar A, <x,T*(Ap)>=<T(x),dy>
—R,«::T{x} e A<x I’*{y}} Al E(y)a
‘Therefore, T*(/’ty) = AT *{y) - ' e )
(1) and (2) together say that 7* is a linear operator.
Again, for ye // we have
IT*IF =<T*G)T*() > =< TT*(3).y >
TSI TINT* Ol 2 |
That means, || 7*()[|=[|7[|]| ||, and therefore T* is a bound linear aperator
over H with || T*|| || T||.
Corollary 1. T**= T _
Now T* is a bounded linear operator; and from the relation

| <I(x),y>=<x,I'*"(y) > let us put I* in place of T to get forallx, ye H.

= I'¥w) y==cx T (V)=
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Interchange x and y to get _
-l ) - Rl ) B
Taking conjugates, <7 *¥(x),y>= { v, Tz TELYE . s £y
Now (*) remains true for all yveH, therei‘mﬁ: we deduce that
TT*(x)=T{(x) and this being true for all xe H we finally nbfain TrE =7
Corollary 2. [|T*||=[|T1.
We do already thave [T *| =] T||; let us apply this in fawur of T* to get
T <) 7
or, [T IT¥|
Therefore, [|TlI=1T*I.
§ 6.2 ALGEBRA OF ADJOINT OPERATORS IN HILBERT SPACE H.

‘Let ,fi and B be two bounded linear operators : H — H ie. 4, Be Bda(H H).
Then 4 + B and o (@ any scalar) are also members of ﬁda(H H).

Theorem 6.2.1. (a) (.&+B)* = A*+B* and (b) I:ﬂ.’ﬁ}* = @A wherc A* denotes
adjoint of A.

_ Proof : (a) For all x, y € H we have «::A[ﬂ,y::-:-:;x,A*{yﬁ: and
< B(x),y>=<x,B*(y)>

Now <ux, (A+B)*y>=<(a+B)x),y>
: =< A(x)+ B(x), y>

i

=< A(x),y>+<B(x),y>
=<x, A*(V)>+=<xB¥(y)=
=<x, A*()+B*(y) =
' .:c:x,(A*+B"‘}{y}::-
This shows that (A+B)*=A*+B*
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(h) <x, @A) *()) > = < (@Ad)(x), y >
=<ad(x), y>
=a < A(x), y=
=a<x, A*(p)=
=< x, A () >
== x (@A) >
This being true for all x, y € H, we have (d)*=aAd*.

For A and B belonging to Bda(H H), let us define (AB) : H’ — H by following
rule of composition; -

[AB}{x] = A(B(x)) for xe H . In this way (BA) . H-—> H is also déﬁned. It is
a routine verification that {AB) : H — H is a linear operator such that for xe &
HCABYX) [[= [ A(BEY =N A BOY <l AN B x ]
This is true for all x € H; Therefore (4B) is also a bcrunded linear operator over
H ie (AB)e Bda(H H).
- Theorem 6.2.2. (AB)* = B’.“A ¥
Proof : For x, y € H, we have < A(x),y > = <x, A¥(y) =
and < B(x),y == -::x,B*(y):; _
Now <(AB)(x), y==<x,(4AB)*( ¥) = which is the same as,
<x,(AB)*() > = < (AB)(x),y >
. =< A(B(x)), y >
=Bl g
= <x, BX(A* () >
=<x, (B*A%) )= .; Therefore we have (ABYE=B*4*
Theorem 6.2.3. Forany 4 Bda(H,H), || 4% =1 Al = 4.

Proof : We always have || 4* 4| <|| 4*|||| 4|\ =|| A[[]| 4]|=|| 4] becauss A% is
also a member of Bdao(H, H)
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ie.  |l4*A|<] 4] _ AL et €
Again [|41F = sup (14D} .
= sup {|< A(x), 4(x) [}
i
= sup {|= A*(A(x)),x [}
=t

= sup {|< (4* A)(x), x >}

lladl=1

ilsﬂlrpl A=A x|} form C-8 inequality,
ffoell= :

<|[A* 4]
Thatis, lAIF sl 44l _ kD)
me (1) and (2) we have || A* Al =|| A Now applying this equality to A*
one obtains || A4* || = || (4*)* 4*|| =[| 4%|2 =[| 4][*- The proof is now complete.
Corollary : Tf Ae Bda(H,H) is such that A4*=A*4 (i.e. 4 and 4%
conunute), then |1A =11 411%- :

§ 6.3 SELF-ADJOINT OPERATORS OVER HILBERT ‘iPALL H.

Definition 6.3.1. A member 7'c Bda(H,H) i.e. T being a bounded linear
‘operator over H is called self-adjoint if *=T,

Theorem 6.3.1; (a) If T, and T are self-adjoint operators over H, then T} + 73 is
50 . _

(b) If T, is self-adjoint and ¢ any real scalar, then o) is self-adjoint,

(c) For any member 7' e Bdar(H H ), T*T, IT* and T4 1% are self-adjoint
Tz.’ ( 7yand T, mmmute]

Proof : (a) (T} + T)* = T i Tl + 7,

(b) (af;)* =&l * = &l, = o, because &is a real scalar.
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(€) (T*T)* = T* TT*¥ = T*T, (TT)* = T*¥7% = TT+.
and (T+ T¥)* = T* + T**= %+ T=T+ ¢
and finally (d) (L5)*=T,%1,*=0T,;. Tharcfme {TTZ)* i, 1f and only if
I =Tl

Theorem 6.3.2. The class of all self-adjoint operators forms a closed real sub-
space of Bdw(H,H), and hence it is a Banach space.

Proof : If 0 and [ denote the zero operator and identity operator, we have 0 and -
I are members of Bdq(H,H). Further 0* = 0 and /* = I; Now if 4 and B are self:
adjoint operators with @ and £ two real scalars, we have

(@A + BB)* =GA*+JR*=ad* + PB*
=ad+ B
Showing thereby that a4 + B is also self-adjoint.

Further if {4,} is a sequence of self-adjoint operators over A such that

lim 4, = 4 in operator norm, ie. || A4, —A[->0 as n—>co. Then we know that A

=yl

18 a buundcd linear opet‘atlor on Hilbert space. So that
A=A S A=A ] A, A )4, A
:”A_' ”;n ||+|| (AJ'?_A)*”

=[|A—A4, ||+ 4,-A||->0 as -,

Hence 4 = A* and A is self-adjoint.

Theorem 6.3.3. Let A be a bounded linear operator : /f — H such that for all
x, € H, <A(x), y== 0, then 4 equals to the zero operator and conversely,

Proof : For the zero operator we always have <0(x),y>=<0,p>=0.
Conversely let for all x, y € H, <d(x), y= = 0. Let us fix x € H and consider
<A(x), y==0for all ye H. That means A(x)=0 in H; Now let x be free and we
see A(x)=0 for x € H; showing 4 = 0.

Eﬂmllm'y 1t 4 15 a bounded lhinear operator : H — H satisfies < A(x), x= =0
for all x € H, then A is the zero operator.
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If x, ye H and o, §are any two scalars we have
O=<(ax+pBy), ax+fy>
=<aA(x)+ fA(y), ax+fy> (A is Linear)
=ad@ < A(x),x > +aP < Ax),y > + fa < A(y),x >+ 8B < A(y), y =
=af < A(x),y =+ B& < A(y), x > other terms are zero by given condition.
Let us take @= 1 and ,3= 1, then we have
<A(x),y=+=<A),x>=0 RSP R T et E YR (1)
Again take =17 and =1, then above gi*.i.res
i< Ax) yE—i<A(y),x==0 _
o, <A y>-<A()x>=0 - @
Adding (1) and (2) we de&uce_ < A(x),y >=0, and now apply Theorem 6.3.3
for desired conclusion.

Theorem 6.3.4. Let 7' Bda(H,H) (T': H — H is a bounded linear operator).
Then T is self-adjoint if and only if < A(x), x > is a real scalar for all ¥ € H (Hilbert
space). T ) e ;

* Proof : Suppose 1 is a self-adjoint operator over H, and let x € H: we have

T x>=<xT(x)>=<x,T¥x)>=<T(x),x>
Therefore scalar < 1{x), x = is a real scalar,
Conversely, let < T{x), x> is real for all x & H.
- Then <T(x), x>=<T(x), x s =< x, T (x)>=<T*(x), x>
Thus <¥{x), x>-<T*(x), x>=0
o, =¥{x)=T%x),x>=0
ar, ==y as=a
This being true for all x in H, we conclude that
I'— I* = zero operator
o AR A S
r.e. T is a self-adjoint operator.

2
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Theorem 6.3.5. If H is a Hilbert space and T ¢ Bda(H,H), such that T is self-.
adjﬁint, Then || 7|l = I?:#Tpl l«T(x), x=|
Proof : If T is self-adjoint, it is ofcourse a bounded liﬁear operator over H. Then
for any x with || x || =1 in A :
e T, xS Nxl by C-S inequality,
UT Il Q== 1.
Therefore, sup [<7/(x) ¥ (=] 7| ] s

Let K= sup leTixi x>
ll=i=l o

- Now we show that || T'|| =KX

If T(a) = 0 for all  with || || =1 in H, then we see that T = 0 (zero operator),
and in that case we have finished.

Otherwise for any z with || z || = 1 such that T(z)#0, put v=.f|[7(z)[.z and

1

W=y - Then [31P= 1w [=I (2. Let us now put 3=+ and

¥, =v—w. Then on straight calculation and using the fact that T is self-adjoint, we
have ' 4

<TOD 3 == <TOR), ¥y > =A< T, w>+ < T(w), v>

= < T(2), T(2) > + <TX(z), 2 3) = 4| T(2) | By

Now for every y=0, and x= 2 we have

B3
y=lylix and <7(3), y>=]| yIP = T(x), x |

S yIP € sup l«T@)u ==K || |

Hel=1

- Now [=T(3), y >—<T0) ¥ 2 21<TO0), 3 =+ 1= T(), s 2
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<K( 1+, 1)
=2K (| v][* +]]w]?)
| =4K || T(2)]
. From here and (2) we get 4| 7(z)|* < 4K | T(2) |
Hence' ||T(z)||=K
So taking supremum over all z with norm | one obtains || 7| < K
together with K <||T}| from (1) we finally get || T = K

Theorem 6.3.6. Let 7' Bda(H H), H bemg Hilbert space show that following
statements are equivalent.

(@) T*T=1I (Identity operator)
(b) <T(x),T(y)>=<x,y> forall x,ycH
{© T =] x|| forall xeH
- Proof: (a)=>(b). Let (@) hold. Then for all x,j:eﬂ , we have
' <T*T(x), y>=<I(x), y>=<xy>
or, < T(x), T( Y)===x, y'..::f , (b) follows.
(b)=> (c) ; suppose (b) is true, Taking y — ¥ in (b).
 We have <T(x), I(x)>=<x,x> |
of, [P = x|
o, ||[T(x)[l=Il=] _
 (©)=(a); Then || T(x)[|=[lx]| gives |7(x)]]* =|| x|f

o, <I(x),T(x)>=<xx>
o, <T*(T(x)),x==<xx>

o, <I*I(x),x>==<x x==0

9]

1

((r*7'-I)(x),x)=0; Here we apply corollary of Theorem 6.3.3 to
mncludc that 7*7-T'=0 or, T#7 =], :
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§ 6.4 EIGEN VALUES AND EIGEN VECTORS OF OPERATOR \DNI
HILBERT SPACE H.

Let T'be a bounded Linear operator : H — H  ie. TeBda(H H).

Definition 6.4.1. A non-zero vector x € H is said to be an eigen vector
corresponding to a scalar A called an eigen value of 1" if

s T(x) = hx :
cor, AxX) - Ax)=0" (] alenotmf, Identity operator on f)
or, (IT'—AD(x)=0

Theorem 6.4.1. Let 7 : H — H be a sclf‘-admmi operator. Then (1) all eigen

values of T (if they exist) are real, and (2) Elgen vectors com:spﬂndmg to different
eigen values of T"are orthognonal.

Proof : (a) Let A be an eigen value of 7 and x a corresponding eigen vector.
Then x# 0 and T(x) = Ax.

Since T is self-adjoint, we have

/1=:x,.ﬁc}:"::ff,x,x}==:T(x),x:>:-::x, Flx)==<x Ax >

=4 <x,x> where < x x»=| x|* is+veas x 0, and this gives
A=7 (since ||x||>0) and therefore A is real. i

(b) Let 4 and u be two different eigen values of 7, and let x and y be mgen
- vectors (non-zero) corresponding to eigen values A and g respectively.

Then we have T(x) = Ax and I(y) = wy. Since T is sclf—adjmnt and eigen values
are real, we have

ic;x,y}:{ix,y:»re:.T{x}?y::;»:x, T'(y)=
qaos =X, P = X it being real,
Since A # u we conclude that <x, y>=0 or, x L y holds.
Theorem 6.4.2. If T Bdo(H,H) such that 7'#7' =77 *, then if x is an eigen

-vector of T with eigen value A, then x is also an eigen value of 7* with eigen value
,{ and conversely,

Proof : Consider the operator T )H in H. Then
(T~ AD(T = AD)* = (L= AI)(I* A1) = IT* A1 - AT*+|xi

and similarly (7 — A1)+ (T - AD) =T*T - AT*-AT+| A[* 1

196



Given T*T = T*7T . Therefore _ _
(1= AT = AIY* = (T~ AI)*(T - AI) puting T — A/ = §
We have SS*=S*§,
Thus t"or xeH , S8*%(x)=58%5(x)
{:rr, <S§*(x), x>=<8*S(x), x>
or, <S*(), 8% x> =< 8(x), S(x) >
of . [IS*®IF=lSEI*
of  [|@*-An) =T - A1) |
on (@ =A< (T*~AT)(x) P
o, ||T-Ax||=|T*-Ax].
This shows that 7(x) = Ar if and only if 7% (xi=dx.
Example 6.4.1. Let L,[0,1] be the real Hilbert space of all square integrable
functions over the closed interval [0,1] with ILP. function e:. oy j.ﬂl x(1) y(r)cﬂ as
. x, yel,[0,1]. .

Show that T :L,)[0,1]— 1,[0,1] defined by 7'(x)=yeL]0,]] where
¥(f)=tx(1) in 0=¢ =1 is a bounded linear operator which is self-adjoint having no
elgen values, -

Solution : Here 1'1s a linear cpcratﬂr bec&uself X,y e .[Q[U landif T(x+y)=z
where z(1) =(x+ })(¥), in 0<y <1, we have

T+ p)(0) = z(0) =1 (x(1) + p(1)) = () + (1)

=TOM+T()Nr)  in 0<r<l.
W T(x+y)=T{x)+T(y) and similarly for any real scalar o, T(ax)=a T'(x).
Further, T(x)()=#(f) in 0=z <1.
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o @I = [ AP d < supli®y[) )
: g | bers a

=Lilxl*, , _
Thus || 7(x) || <]l x||; that shows that T"is a bounded linear operator in L,[0,1].
T is self-adjoint. Let x, y e L,[0,1], then we have- '

<%, T() > = [ X0 (o)di = [ e(t) ey

1 1 :
and <y, T()>= ||y @yt = | @)y @
- Therefore < x, T'(y)>=<y, 1(x)>; That shows T as self-adjoint,

If Ais an cigen value of T, and a non-zero xe L,[0,1] is an eigen vector of T
corresponding to the eigen value A , we have
' T(x) = Ax
or, (f) = Ax(¢) I 0=y<1
or, {—-Ax()=0 m 0=f<1
Since x is non-zero, we have { = Ain 0 <t 51, which is not the case. Thus no
such A is there, ie. T possesses no eigen value. :

Theorem 6.4.3. Every bounded linear operator 7' on a Hilbert space H is eu:[ual
to a sum A + 7B where 4 and B are self-adjoint operator in A.

Proof : Let us d(_:ﬁ.ne A and R as follows

- o e e e
A= {T+T },.amdB 5 -T7%),

en A*=—(T*+7)=4 an o U e T o each of
"Then A* 1{?* T)=A and B*=—L(r*-1) ‘{T T*)=B; So each of

A and B is a self-adjoint operator on H such that 4 + 7B = T.

Remark : Representation of T as T'=A4 + iB is unique. Bccause Let T=C+iD
where C and [ are self-adjoint operator on H; then T% = (C + iD)* = (' — i[} and
hence T+ T =2Cand 7'— 7% = 2iD; Thus C =4 and D = B.
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EXERCISE A

Short answer type gquestions

o

¥

: : b
" 1. Find the eigen values dnd eigen vectors of [_ B a] h=0 and a, b are reals,

a

2 Examine if zero operator and Identity operator in a [—I'leert space H are self-
adjoint.

3. IfTisa aelf—ad]mnt operator in a Hilbert space H show that fnr every natural
number 7, 1% is self-adjoint.

4 IfTisa salf—adjmnt operator in a Hilbert space H, and S is any bounded Linear
" operator in H, show that S*7.§ is self-adjoint,

- o oy
5. Show that (ﬂ T] does not possess any eigen vector.

EXERCISE B
1. Given a square matrix A:((aﬁ};)mﬂ having eigen values 4,4,,....4,, show
| that k4 has eigen values kA k4. k4, and A? has eigen values
A2 222 Az : .
2. Let T:l, —>1, be defined by 7'(4,&;,..-) =(0,0,41,55,-) 88 (61,85 ) €65

Examine. if 7' is a bounded linear operator in I, and if T is self-adjoint in /.

3. Show that in a Hilbert space H, T*T, =BT if and only if [T ()=l L]
forall xe H. :

4 InHifTis ﬁelf“ﬂdjﬂmt show that T(x) = 0 inH rf and only if T Hx=4.

Let T: H — H and W : H — H be bounded Linear operators and §= W*TH.
Show that if 7' is self-adjoint and +ve, so will be 5.
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Any system of education which ignores Indian conditions, requirements,
history and sociology i too unscientific (o commend itself to any - rational
SO ppOrt,
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